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ABSTRACT

We report a low temperature study of very small superconducting tunnel junctions.
The samples were fabricated by using electron-beam lithography and thermal cvaporation in
single-junction, double-junction and eleven-junction-array configurations. The junctions
had normal resistances between 0.5 and 140 k€2 and areas between 0.1 and 0.02 (um)2.
We measured the current-voltage characteristics of the devices at low temperatures (20 mK
-4 K}, using a dilution refrigerator.

In general, the devices had a large single electron charging energy E, = ¢2/2C of
order 1 K. By varying the ratio of £, to the Josephson coupling energy Ej, we studied the
crossover between the conventional Josephson regime, in which Ey >> E,, and the
Coulomb blockade regime, in which charging #ffects arc dominant. For comparable
charging and Josephson energies the I-V curve is resistive at all currents, and exhibits a
novel low-voltage resistance R, at currents iess than the critical current /.. Moreover, [, is
greatly reduced when compared to conventional Josephson junction results, and scaies at
low temperatures with R,2. If a magnetic field is applied to the junctions, reducing £J so
that Ey << E;, we find a stiiking regime in which aspects of the Coulomb blockade of
tuni:eling coexist with features typical ¢f Josephson tunneling.

We develop a number of semiquantitative models which appear to explain the
salicnt new features of our observations. In the high temperature regime, thermal activation
and damping effects are very important, since E; and Ey are only of order I K, and the
experimental results are fitted by extending well established classical models. At low
temyj eratures, however, quantum fluctuations of the phase appear to become much more

important, as thermal fluctuations and quasiparticle damping freeze out. We then turn to

‘quar tum mechanical methods to analyze our measurements. We use the semiclassical

WK3 approach, valid in the low E¢/E; limit (and extend it to regions nearer the E, ~ Ej

limit by & numerical method), to obtain estimates of R, in reasonably good agreement with
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our measurements. Moreover, by assuming that /, scales with the binding energy of the
ground state phase wavefunction in the Josephson potential, we account for its
experimental R,-2 dependence. Finally, we use a charge-space model io provide a

semiquantitative account of the measurements in the high E/E; limit.
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CHAPTER. ONE
INTRODUCTION

One of the main technical trends in the twentieth century has been towards
miniaturization. Physicists and engineers have sought to decrease the size of their devices
to permit an increase in their complexity and flexibility. As the characteristic size of a
device decreases, new physical phienomena are sometimes discovered whick give rise to
new applications, and illuminate fundamental physical questions.

Due to the technical breakthroughs of electron-beam lithography and dilution
refrigeration, it has now become possible to study devices of such small size that their
behavior is affected by the quantum mechanical properties of single electrons. An example
is the measurement of the Aharonov-Bohm effect and of quantum conductance fluctuations
due to the interference of electron wavefurctions, observed in metallic wires and
semiconducting devices [see, for example, Umbach, et al., 1984; Skocpol et al.,1986; Lee
et al. 1987]. A second example is the observation of discrete electronic states in small
"zero dimensional” GaAs quantum well structures known as "quantum dots" {Reed ez al.,
1988]. These systems are mesoscopic: while they are composed of a macroscopic number
of particles, they are small enough so that their behavior is directly associated with
microscopic phenomena,

This work is an experimental study of mesoscopic Josephson junctions. A
Josephson junction is composed of two superconductiug electrodes separated by an
insulating barrier, as shown schematically in Fig. 1.1(a). Since the early 1960's, when
the first theoretical predictions and experimental observations were made, this system has
been well studied both theoretically and experimentally [see, for example, Tinkham, 1975,
and Barone and Paterno, 1982]. The Josephson junction, in its usual configurations, is
now well understood, and models have been developed which successfully predict its

behavior. The most important variable which describes the system is the phase difference ¢

L T s LR
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Figure 1.1: (a) Schematic of a Josephson junction and current biasing scheme. (b) The

Josephson potential: U(¢)= -Ej cos ¢ - (hi2e) 1p.
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between the superconducting wavefunctions describing the two junction electrodes. The
two electrodes are coupled, with characteristic energy Ej, as the two wavefunctions ovariap
near the barrier, resulting in the Josephson effect. E;=(h/8¢2)(A/R,), at low temperatures,
for an ideal junction, where A is the superconducting energy gap, and Ry is the normal
resistance. ¢ is a macroscopic variable, describing the Behavior of a large system, since the
phase of each wavefuuction is associated with the whole macroscopic superconducting
electrode. ¢ has a quantum mechanical conjugate: Q, the Cooper pair charge difference
between the superconducting electrodes. The characteristic energy associated with the
charge is the single electron charging energy E,, the capacitive energy hssociated with a
difference of one electron across the junction barrier. E;= ¢2/2C where C is the
capacitance. In conventiona! Josephson devices, Ey >> E,, and the junction behavior is
well described by semiclassical models.

The contribution of this thesis to the extensive literature on Josephson devices is in
understanding some of the novel physicai phenomena encountered when the single electron
charging energy is made comparable to the Josephson energy. Our study is based on low
temperature measurements of the current-voltage (I-V) characteristics of high resistance,
low capacitunce Josephson junctions, with E; of order E;. If E. ~ E}, the system can no
longer be described by well known macroscopic physics, since a single electron transfer
contributes e very significant energy change. On the other hand, if E; is still significant,
the macroscopic phase difference ¢ plays a role in the system's behavior. The Josephsen
junction is then a mesoscopic system.

The dynamics of a Josephson device, in: its simplest form, may be described by a
hamiltonian H,, which is a function of the phase difference ¢ between the wavefunctions of
the two electrcdes, and the charge Q transferred between the electrodes. Ignoring

dissipation, we write




4
2

Hy(9.Q) =E/ % ~E, cos ¢ "

The effect of a current bias can be incorporated by adding a term eque’ to -(#/2e)l¢, where |
is the bias current.  For conventional junctions, the dominant energy in the problem is the
Josephson coupling energy and the most important term in H(¢,Q) is the one associated
with E;. The dynamics of the problem at low currents are then simply obtained by the
minimization of energy by = classically well-defined ¢ value at a minimun of a well of the
tilted cosinusoidal potential shown in Fig. 1.1 (b). The phase ¢ is thus "trapped” in a
potential well until the tilt imposed on the Josephson potential by the current bias is enough
to allow it to escape. This results in the I-V characteristic features shown in Fig. 1.2(a); a
zero resistance branch at low currents, and a very shaip jump to the dissipative voltage state
at a critical current /.,

In recent years, by fabricating granular films or very smal! tunnel junctions, it has
been possible to study devices in which the charging energy is dominant over the other
energies of the system (such as kpT or E;). [Giaever and Zeller, 1968; Lambe and
Jaklevic, 1969; Cavicchi and Silsbee, 1985 and 1988; Barner and Ruggiero, 1987; Fulton
and Dolan, 1987; van Bentum ez al., 1988.] This has been achieved in samples with both
normal and superconducting electrodes. In normal samples, a typical low temperature I-V
response is shown in Fig. 1.2(b). At low voltages charge is trapped, and the resistance is
very high, until the system acquires enough energy from the biasing source to enable an
electron to tunnel to the other slectrode. At this point (V=¢/2C) the dynamic resistance
decreases producing a knee in the I-V curve, This effect is known as tue "Coulomb
blockade".

Fulton and Dolan [1987] observed a similar effect in superconducting samples in
which the charging energy is much larger than the Josephson coupling energy. As a result

the knee at V=¢/2C is svperimposed on the superconducting energy gap, as shown
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Fig. 1.2: Schematics of typical tunnel junctic.: I-V characteristics: (a) underdamped
superconductor- insulator-superconductor tunnel junction with Ey >> E;, kgT. (b) normal-
insulator-normal tunnel junction with E, >> kgT. (c) superconductor-insulator-

superconductor tunnel junction with E; >> E, kgT.
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si:hematically in Fig 1.2(c). In a broad sense, this effect is conjugate to the Josephson
¢ fect described above. 1n conventional devices ¢ is a "well defined" semiclassical
variable, while @ is ill defined. When the charging energy is dominant and the Josephson
coupling energy is insignificant, quantum fluctuations in ¢ are very large and the rantum
racchanical conjugate @ may now be treated classically. The resulting dynamics are very
different: the zero resistance branch up to 7=/, of the Josephson effect I-V curve is replaced
by a very high resistance branch with no critical current,

Our study explores the crossover region between the two extremes described
above. [Iansiti er al, 1987a, 1987b, 19884, and 1988b.] By varying the ratio x=E./E;, we
sweep from a regime in which the Josephson coupling energy is large, well into the regime
in which the charging energy appears to dominate. Experimentally, we have achieved this
in two different ways: First, we have constructed samples of different areas and oxide
barrier thicknesses, which has allowed us to go from E/E=1/100 to E,/E;~10. Second,
we have further decreased E; by applying a magnetic field, which has enabled us to study
the system with x values in principle approaching infinity, as £; — 0.

If the Josephson energy is much larger than €2/2C, we obtain results typical of
conventional Josephson devices. As the Josephscn and charging energy become of
vomparable magnitude, however, we observe two novel regimes. First, we find that as E,
becomes of order E, the critical current is greatly reduced and the 1-V curve becomes
resistive, even at very low bias currents, as shown in Fig. 1.3. Second, if the Josephson
coupling is reduced further by applying a magnetic field, we observe the new type of I-V
curve shown in Fig. 1.4. The striking feature is the coexistence of a plateau beginning at
V=¢/2C, reminiscent of Coulomb blockade measurements made on samples in which Eg is
completely dominant, with other features common to Josephison tunneling, such as a sharp
jump from the plateau voltage to the superconducting energy gap voltage at a "critical
current" /.. If the magnetic field is increased further, the electrodes become normal, and

we observe the Coulomb blockade I-V characteristic shown in Fig. 1.5,
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Fig. 1.4: I-V characteristic of a single Josephson junction with R,= 140k2 and estimated
C =1 fF taken in a magnetic field of 0.2 resla at T=30mK.
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In this report, we discuss these observations, and explore their interpretation in
some detail. We begin in Chapte : 2 hv providing some theoretical background necessary to
discuss our experimental results. An account of the methods used in the fabrication and
measurement of the samples is given in Chapter 3. Next, in Chapter 4, we describe our
experimental results. We then discuss a few simple models which we have used in their
interpretation: We first examine the semiclassical models used in interpreting earlier work
in Chapter 5 to see to what extent they can explain the new data by simply taking acconnt of
the new parameiter regimes involved. Second, in Chapter 6, we investizate to what extent
the introduction of a more fully quanturmm mechanical picture, including large quantum

H uncertainties in ¢ space, can account for the remaining *ratures. We conclude in Chapter 7.
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CHAPTER 2
THEORETICAL OVERVIEW

This chapter develops some theoretical tools that will be used extensively in the
discussion sections of this report, in Chapters 5 and 6. We write down and justify a
Hamiltonian which includes the different components that are necessary for a description of
Josephson junction dynamics: Josephson tunneling, quasiparticle tunneling and the effect
of the environment, charging effects, and the effect of an external biasing source. We then
examine some simple consequences of the Hamiltonian description in the quantum

mechanical and classical limits.

2.1 The Josephson Hamiltonian

The Josephson junction is described by the two quantum mechanical conjugate

variables ¢ and Q.

(9.Q] = 2ie 2.1)

As described in Chapter 1, ¢ is the phase difference between the superconducting
wavefunctions on each electrode, and Q is the charge difference across the junction. In
visualizing the problem, it is useful to establish a comparison with mechanics: using an
appropriate normalization, we can treat ¢ as the position variable X, and Q as the

momentum variable P. The role of the system mass M, is then played by the capacitance

C.

P X, (hi2e) Q ¢ P, (hi2e) C &M, 2.2)
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The Josephson junction Hamiltonian H,, discussed in Chapter 1,

2

=E2 -
H,(9,0) =E, pe E] cos ¢ (2.3)

can then be simply mapped into the Hamiltonian

2

H(X,P)=45r+V(X) (2.4)

The charging energy term in (2.3) then plays the role of a kinetic energy term, while the
Josephson term plays the role of the potential energy.

To provide a more complete description of the system, it is necessary to incorporate
other important factors. First of all, ¢ is a macroscopic variable, since it is given by the
difference in phase between the superconducting wavefunctions associated with each
macroscopic junction electrode. Therefore, ¢ is coupled to the "environment”, made up of
a large number of degrees of freedom. In the mechanical analog, the system loses energy
by friction. This friction-like term may strongly affect the dynamics of the system, and
must therefore be incorporated in the discussion. Following an approach pioneered by
Caldeira and Leggett [Caldeira and Leggett 1981, 1983] the effect of the environment can
be included in the Hamiltonian by adding an additional term H,.

Finally, in order to measure the system, we need to excite it with a measuring
current, produced by an external source. The external current source can be added to the
system by adding another term to the Hamiltonian which we call Hj.

The complete Hamiltonian is then given by

H(¢,Q0)=H, +H, +H, (2.5)

— —
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This chapter is devoted to a more detailed discussion of the origin of the different terms in
(2.5), and of their effect on the dynamics of the system,

2.2 The Basic Hamiltonian H,

The most basic Josephson junction Hamiltonian H,, given above by (2.3), is
composed of two terms. The first term, equal to 92/2C, represents the capacitive charging
energy associated with a charge difference* @ between the electrodes.

If we study a tunnel junction whose electrodes are superconducting, we must add a

second term to the Hamiltonian. The right and left electrodes can be desciibed by the

complex wavefunctions ¥g and ‘¥, If the two wavefunctions overlap there will be an

energy term due to their interference, given by

AE = - (constant) (YRY¥L* + WL ¥R" )
= - (constant) |'¥r ¥/ cos ¢ ‘
=-Eycos ¢

The value of the Josephson energy Ey was calculated by Ambegaokar and Baratoff [1963],
and is equal to, for an ideal tunnel junction,

=—ha .
et (,T)

(2.6)

* By "charge difference” we mean the difference in charge one one electrode between the present state of the
system and the neutral state.

R S e F R T R WO
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If we incorporate the charging and Josephson terms in the description of the Jesephson

system we thus arrive to the basic Hamiltonian 4, given in (2.3).

2.2.1 ¢ space solutions
To express (2.3) in ¢ space, taking account of the quantum nature of the phase-
number relationship described by (2.1), we make the operator replacement Q — 2ie o/0p,

and obtain

H= -Ej cos ¢ - 4E FIoW @.7)

where, again, E;=e2/2C. We see that the parameter x = E/E; provides a measure of the

relative importance of the charging energy in forcing a delocalization of the phase, away

from the minimum potential energy point at ¢ = 0. Physically, this reflects the uncertainty

relation between phase and particle number (or charge):
Ap AN 2 ] (2.8)

where N = Qle. Forx << I the ground state is a narrowly peaked wavefunction y(¢) with

width of order x//4, and there are many higher states in each minimum, resembling the

excited states of a harmonic oscillator. By contrast, when x >> I, the term in E is
dominant, and y approaches a constant to minimize it. At this point, one should no longer
ignore the periodicity of the potential term -Ej cos ¢ and the question of whether ¢ should
be viewed as an extended variable, or a cyclic one such that ¢ and ¢ + 27 (or 47, if we

include quasiparticles$) are physically indistinguishable. From: the former point of view,

W(¢) has the form of a Bloch function u(@) ei49, where u(¢) is periodic with period 2r;

§ See, for example, Ambegaokar, Eckemn, and Schn [198.),
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from the latter point of view, Y{@) is only defined between -z and + 7, and it must satisfy
appropriate boundary conditions at those points. So long as we restrict our attention to the
ground state, which we expect to correspond to ¢ = 0 in the Bloch picture, and to the
boundary conditions y(7) = y(—n) and ¥'(n) = y/(-x) = 0in the single cell picture, both
pictures yield the same eigenvalue problem, and the same energy eigenvalue E.

Since this problem is one-dimensional, it is easy to solve by numerical means,
However, one obtains more insight by a variational approach, using trial functions
apbropriate to the limiting cases of x<< 1 and x>>1, respectively. For x << I, one assumes

a Gaussian trial function,

,2

W)~ e 49 (2.9)

where o, the rms spread in ¢, is chosen to minimize the expectation value of (2.9). The

resulting minimum energy is

2.1

2.11)
For x << 1, (2.11) leads to the analytic approximation

= -Ej[l-(2x)12] (2.12)
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In the other limiting case of x >> 1, an appropriate trial function which satisfies the
boundary conditions at the edge of the cell is

V($)~ (1 +acos @) (2.13)

Minimization of the expectation value of the energy with respect to the parameter a leads to

the condition that

a=4x[(1+ 1/8x2)2.1] (2.14)

For this value of a, the energy is

E=-Ej2x[(1+ 1/8x2)12-1] (2.15)

For x >> 1, this has the limiting form

E ~-E;8x = - E)2/8E, (2.16)

where the second form shows explicitly that in this limit the binding energy is second
order in Ej, in contrast to binding energy in the classical limit, which is first order in Ej,

since E = -Ej.

These variational approximations to the ground state energy are plotted in Fig.
2.1(a) The tight-binding approximation (2.9) gives a lower (more accurate) energy for x <
1/4, and the weak-binding approximation (2.13) gives a better energy for x > 1/4,
Numerical solutions in the cross-over region near x = 1/4 show that the exuct binding
energy exceeds the better of the two approximations by less than 5%, even in the worst

case. The wave functions y{¢) for values of x ranging from 0.05 to I are shown in Fig,

T R RO L T
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Fig. 2.1: (a) Estimated binding energy E vs. x = E./E;. The two curves corraspond to two
different trial wavefunctions, as outlined in the text.

wavefunction y(¢) as a function cf ¢, for different valnes of x. From top to bottom the

“we,

Ay
i 4
I \
//;o \‘\\

curves correspond to x = 1, 0.5, 0.3, 0.1, 0.05.
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2.1(b). In this figure, the loose-binding approximation is shown for x > 1/4 and the tight-
binding approximation for x< 1/4. Qualitatively, it is clear that for x > 1/4, the probability
density for the phase variable ¢ is sufficiently delocalized that it is no longer a good

approximation to treat ¢ as a semiclassical variable,

2.2.2 Q-space solutions

To investigate the regime in which E; > E, it is convenient to express the problem
as a fuaction of the charge variable Q. In the E; >> Fj limit, quantum phase fluctuations
become very large while Q can be treated classically. Moreover, by going to Q-space, an.
assuming Bloch-function solutions to the Hamiltonian (2.3) we automatically take care of
the 2x phase periodicity of the Josephson potential.

We will first examine the regime in which the charging energy is dominant over E.
A plot of the charging term in the Hamiltonian (Q%/2C) as a function of Q is shown in Fig.
2.2. The voltage across the junction is given by V= dE/dQ. To model single electron
tunneling we can for the moment include in the system a second meckanism which is able
to transfur electrons from one side to the other in lumps equal to the electron charge e. Due
to the discreteness of the charge transfer, two types of transitions are possible, indicated in
Fig. 2.2 by (1) and (2). If the initial Q is less than /2 (V<e/2C), as in (1), the transition is
energetically unfavorable. If the initial Q is larger than e/2, the transition is favorable. If
we add charge to this system in a continuous fashion, by attaching highly resistive leads,
we have the following situation. For V < €/2C, electron tunneling is discouraged and the
dynamic resistance of the device is kigh. For V > ¢/2C, the tunncling process becomes
energetically favorable and the dynamic resistance decreases. The resulting I-V
characteristics of the device are then those typical of the Coulomb blockade, shown in Fig.

1.1(a) and 1.4.
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=dE/dQ

Fig. 2.2: Energy stored on a Normal - Insulator - Normal junction as a function of charge Q.
The two arrows indicate changes in @ of magnitude ¢, corresponding to having one electron
tunnel from one electrode to the other. For Q < ¢/2, this transition is not energetically favored.
For Q > ¢/2 it is energetically favored. Adapted from Averin and Likharev [1986].
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Fig. 2.3: Energy spectrum of a Josephson junction, plotted in ¢- 2nd g-space: (a) g-space,
x=0.1. (b) ¢p—space, x =0.1. () g-space, x = 2.5. (d) ¢-space, x = 2.5,
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If we now put the Josephson potential term in the Hamiltonian, postponing the
further treatment of single electron effects to Section 2.3, the energy spectrum f the
Josephson device then assumes a band-like structure, reminiscent of that of a one
dimensional crystal. The wavefunction y(¢) takes the the form of a Bloch function u(¢)
€i49, where u(¢) is periodic with period 2. This approach appears particularly appropriate
for the case E, >> E; (that is, x >> I) where the band structure approaches that of a free
particle, with small energy gaps caused by the periodic Josephson potential. The
"quasicharge” g, playing a role analogous to the crystal- or quasi-momentum in a solid, can
then be accurately identified with the charge difference Q. Fig. 2.3 shows a sketch of the
energy spectrum of the Josephson system, drawn both as a function of ¢ and ¢ for
comparison, for x = 0.1 and 2.5. The qualitative behavior of the device is simple: the
device can charge up, as a common capacitor, but it can only discharge by having electrons
tunnel from one electrode to the other. While the charging-up process may be continuous,
the discharge by tunneling is discrete, in units of 2¢ for Cooper pairs. In this limit, E; is
the width of the the gaps at ¢ = + ¢,where the "kinetic energy” 02/2C = €2/2C = E,. In the
opposite limit, x << 1, because of the negligible MQT between adjacent minima, the bands
approach zero width, and low-lying ones are separated by the resonance frequency of a

Josephson potential well, fioy, = (8EEj)IR2.

2.3 The Effect of Dissipation

In their classic 1981 and 1983 papers, Caldeira and Leggett (CL) developed a
successful method for incorporating the effect of dissipation in a macroscopic quantum
mechanical Hamiltonian, [See Caldeira and Leggett 1981, 1983). CL suggested modeling
the ervironment as an infinite collection of harmonic oscillators. While the exact nature of
the environment Hamiltonian term is usually unknown, this harmonic oscillator model is an

extremely gond representation of the system, as long as the extent to which any single

e DR |
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degree of freedom is perturbed is small.# Building on concepts developed by Langer,
Coleman, and Callan [Langer, 1967; Coleman, 1977; Callan ahd Coleman, 1977] CL use
an "instanton" technique to calculate the effect of dissipation on the tunneling rate out of a

metastable minimum, a calculation which can be easily applied to a Josephson device.

2.3.1 The harmonic oscillator Lagrangian

Throughout this section we refer to the "system" as the basic system of interest (i.e.
the Josephson junction Hamiltonian H,), and to the "environment" as the collection of
infinitely many degrees of freedom surrounding the system. Reverting to the "mechanics

analog" notation introduced in Section 2.1, we write the basic system Lagrangian as

PZ
Loys=am -V (X) 2.17)

Following CL, we write down the general Lagrangian for an infinite set of harmonic

oscillators, modeling the environment

1 -2
Losc=z (—-z-mjxj —?mjwfxf)
Jj 2.18)

where mj, xj, and @j; are, respectively, the mass, position and resonance frequency of each
oscillator. The effect of the environment on our system can then be modeled as an

interaction term:

# This does not imply that the treatment is restricted to low damping cases, s.1ce the collective effect of all

degrees of freedom can be large.
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Lo=2 (F(X)x;+®X))
i (2.19)

the critical assumption is, again, that each single degree of freedom is only weakly
penurbéd, so that the cross term can be taken to be linear in x;. CL argue that the
representation in (2.19) is valid without loss of generality. The function dyX) is related to
questions of frequency renormalization and, for many physical systems of interest is given

by

F(x
o(X )=—2—i——3-
(2.20)

This completes the statement of the Lagrangian. In order to examine the effect of

dissipation on the dynamics of the Josephson system, further simplifications must be

.made. In the following s stion, (3.2.2) we cover the assumption of linear dissipation,

often used to treat Josephson junctions in the semiclassical regime. We use it to briefly
illustrate some consequences of damping on the phase tunneling rate and energy levels of

the Josephson system.
2.3.2 The case of strictly linear dissipation
In the limit of “strictly linear dissipation," the cross-term n the systerr-environment

interaction Lagrangian is linearly proportional to the position (or phase) variable X:

Fj=Xcj _ (2.21)

TR L s T
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chgcn (1984], shows that an arbitrary linear dissipation mechanism will satisfy (2.21).
This includes thus not only strictly ohmic dissipation (having a simple resistor in parallel
with the Josephson junction) but also any other linear admittance of arbitrary frequency
dependence shunting the tunnel junction. The constants ¢; are then related to the complex
admittance of the system, as derived by Leggett [1984]. For the special case of ohmic
dissipation, this relation is particularly simple: We define a spectral density for the

harmonic oscillator bath us:

Jo)= -% ;mjjwj 8((0—- )

(2.22)

Then,
Jo)=no (2.23)

where 7 is the simple friction coefficient for the system. In the case of Josephson junction

shunted by a linear resistance R, 7)/M corresponds to I/RC.

Once we assume (2.21), we can write down the complete Hamiltonian for the

system and environment in a rather transparent way:

2

P v ! .2 I 2 ch
H=37-V(X )+~'.4 TmX; +Z—2-m‘,.wj X, - 3
J
(2.24)

I m o
J fhad|

Equation (2.24) evokes a simple heuristic picture of a system of coupled harmonic

oscillators, as sketched in Fig. 2.4,
The model of CL has had its greatest success in the c~lculation of the effect of

dissipation on the tunneling rate out of a metastable well of the Josephson potential. CL

g y—
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Fig. 2.4: Simple representation of the interaction between the Josephson

system and the environment. The large pendulum is a representation of the
Josephson tunneling interaction, the smaller pendula represent the oscillator
bath.
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[1981,1982] calculate the density matrix for the system, in the strictly linear dissipation
limit. Since the only interest is in the motion of the coordinates of the system, and not of

the environment, they can focus on the reduced density matrix, given by

K(X,. %, Ty = [Tt SVaX o5 a)¥ oKy 2ei) {5 )

(2.25)
where the subscripts i and f denote the initial and final values, the product over & accounts
for the contribution of the infinite degrees of freedom of the environment, and the sum over
n covers the states of the system. CL choose to examine the path integral representation of
(2.25), which, after considerable simplification, integrating out the oscillator degrees of

freedom, is expressed in the following form:

x(T)= Xf
K(X;, X :T)=KST) [ " DIX(Dewp{= S,[X(®) 1 #}

K,(T)= | -zl—csh( wazhﬁ)]

(2.26)

where D{X(7)} denotes the integration cver all possible paths from X; to Xz.*, and csh

denotes the hyperbolic cosecant. The "effective action” Segis given by

kB . L kB
Syl X (0] = _[o [—%sz + V(X)]dt+ +] ac jo [alt- o) X(D) - X ()]’ dr

(2.27)

with

* For a description of path integration, please see Feynman and Hibbs [1965, chapter 2].

- T
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at- ) m—= [ J(oexp (- dr- tl)do =~ =
2r Io 4rn (¢- 1.")2 (2.28)

where 8 = (kgT )-1, and the last approximate equality is only valid in the ohmic case.

These results can be applied to a variety of problems. The tunneling rate out of a
metastable potential well is given by the imaginary part of the ground state energy, which is
obtained from the density matrix K for X; = Xy = 0. From this, one key general
consequence of the model becomes apparent: Since the damping term [the rightmost term {
in (2.27)] is positive definite, the effect of damping is to increase the effective action and
thus increase the exponent in the integral (2.26). While in the absence of the environment 1
the density matrix need only be defined in X (or ¢) space, when the collection of harmonic
oscillators is included, the leading paths in the density matrix path integral are lengthened
by a detour in the infinite dimensional space of the harmonic oscillators. The final effect
will always be to suppress the tunneling rate and lower the ground state energy of the
system.

The tunneling rate can be extracted from (2.26) in the semiclassical limit by using
the method of steepest descents. The leading contributions to the integral (2.26) will then 1
be from paths around the saddle point of the action Se. Callan and Coleman [1977] show

that the ground state energy E, can then be expressed in the form$

how, -2
E,=\—52- hke * |1+ 0(h)

(2.29)

§ The factor (1 +0(h)) implies that the expression is correct within additional dimensionless terms which

contain a factor of h, i.e., the expression is accurate in the semiclassical limit.
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where the "bounce" B is equal to the action evaluated along the saddle-point path, and ay, is
the classical resonance frequency of the well. The leading contribution to the bounce
simply comes from the classical path in which the potential V(X) is turned upside down
and the particle is allowed to accelerate down the energy well and "bounce" back to the
starting point, as shown in Fig 2.5. While the term in the exponential B is due to the
"shortest" path, the prefactor K is an indication of how many paths are contributing to the
integral. The addition of damping thus appears to lower the ground state in the well. In
general. the addition of damping to a stable or metastable system tends to squash the energy
levels together, and push them towards the bottom of the well. A nice treatrnent of this is
given by Esteve, Devoret, and Martinis [1986], who analyze the effect of an arbitrary linear
damping mechanism on the energy levels of a Josephson device using simple second order
perturbation theory on the damping Hamiltonian. As the tunneling rate increases, however,
the problem becomes less semiclassical as more and more paths begin to contribute, and the
approximation breaks down.

The tunneling rate I'is given by

I'=-21Im(Ey) i (2.30)

If the potential V(X) is metastable, the above expression is not equal to zero. For the case

of ohmic damping CL [1981,1982] estimate I"to be equal to, at T = 0

[

wo
r -3-7?'\/\'_ x exp(— vs)

(2.31)

where @), is the resonance frequency of the well, v is the barrier height normalized to #aw,,
and s is the bounce action normalized to #v. In the case of weak damping, s and ¥ are

given by
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V(X)

-V(X)

bounce path

(b)

Figure 2.5: (a) A metastable pbtcntial. (b) Representation of classical
"bounce" trajectory on upside-down potential
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s = 3_;.5 1 +-—L-—45”§3) o+ O(az)]
2=122/6 all+ ca+ ] (2.32)

where & = /Moy, o) being the resonance frequency of the inverted potential, and ¢ ~ 2.6.
These values are calculated for a cubic potential of the form V(X) = (1/2)w,2X2- (1/3)AX3,
but they apply with reasonable accuracy to the tilted cosinusoidal Josephson potential.
From (2.32) it is clear that the effect of damping becomes significant when the
value of & becomes of order one. If we express this in variables more common to

Josephson junctions, we have (for zero current bias)

1_Ro [E.
ﬂZREj

a=
(2.33)

where , = (8E.Ej)!/2/f, and Rg = h/4€is the quantum unit of resistance.

It is possible to extend the calculation and derive results as a function of temperature
as has been done by several authors [see, for a review, H. Grabert, 1985, and P. Hinggi,
1986]. The tunneling rate increases with temperature. Qualitatively, in the low damping

limit, the rate is essentially temperature independent below a crossover temperature T¢rogs,

with

h /
T eross= za;:( 1+ a? - a)

(2.34)

More exactly, [see, for ex., Grabert, et al., 1987] the normalized bounce action s becomes:
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_ 36 483 5 2 w4 2 6
S‘T[“' 3 a- 5700 -jrald +0(a ,0)] 2.35)
where 6 = T/TCYOSS'

The major results of this section can be summarized as follows: CL developed a

very nice way to include dissipation in a quantum mechanical Hamiltonian. The effect of

dissipation is to decrease the quantum tunneling rate. CL estimated the tunneling rate in a

. semiclassical (low h) limit, and its decrease should be significant when the parameter ¢

(eq. 2.33) is of order 1. The crossover temperature from thermally activated to quantum
behavior is given by (2.34) in the low damping limit.

While these results bave been proven to be remarkably accurate in predicting the
results of tunneling experiments, they break down when the energy level spacing is not
much smaller than the barrier height. Therefore, while they present a qualitatively accurate
and heuristically valuable method, the results in this section are expected to break down
when E. is of order E;. In the latter case, if damping is sufficiently low, quantum
fluctuations in ¢ are expected to become comparable to the periodicity of the Josephson

potential (27), as illustrated above in Section 2,2.1, and a full quantum treatment is needed.

2.3.3 Microscopic mode! of dissipation in a Josephson junction

In 1982, Ambegaokar, Eckern, and Schn, (AES), developed a microscopic model
for dissipation in a Josephson tunnel junction. By using a functional integral approach,
AES integrate out the quasiparticle degrees of freedom, responsible for the dissipation, and

obtain the following form for the effective action S

Sey[#()] = Jo”[;—m’ +V(9) e

+4 j_-..df j;hg Og(T = f)[l = cos (M)]

2 (2.36)
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where we remind the reader that in our notation the "mechanics” variable X and the
Josephsoa system variabie ¢ are interchangeable. The form in (2.36) thus reduces to the
CL form in the limit of small ¢(z) - ¢(7’). The Fourier transform of the kernel agy(7),
Cgp(@), is proportional to the quasiparticle I-V response Ig(V), i.e. the I-V curve one
would measure in a perfect superconductor - insulator - superconductor if the Josephson
effect were destroyed. Specifically, Ig5(V) =-2¢ aqp(eV/ﬁ). Qgp(®) is has the following
‘limiting forms, at T=0 [Eckern, Schén and Ambegaokar, 1984):

3x_h__ hot
- iR A lhol<< 4
Oy @) ~ .
- —dl, hay>> A
2eZR”ItaI [ hed

2.3D

with the voltage V corresponding to fi/ay /e. If only small frequencies and small variations
of the phase/position variable are relevant to the problem, we can expand the trigonometric
term in (2.36). The result is that the quasiparticle term in the effective action takes the same
form of the kinetic energy term [see Eckern, Schn and Ambegaokar, 1984]. It is then
possible to identify the effect of quasiparticles in this regime as simply adding mass (or
capacitance) to the system. In capacitance units, we have:

3 mh
& =
32 AR, (2.38)

For parameters typical for our samples, having normal resistances in the kiloohm region,
this term is usually of order /0-/7F, and is much smaller than the geometrical capacitance of

the system, of order I0-I5 F.




ey

33

The effective action quoted in (2.36) gives the problem an interesting twist in that it
is periodic in the phase, but with period 47. The simple reason for this is that we have
now allowed in the problem ¢lectrons (of charge ¢) as well as Cooper pairs (of charge 2e).
As a result, an acceptable basis for the Hamiltonian are 45 periodic plane waves of the form
W(¢) ~ exp(ing¥2), where n is an integer. These are now eigenstates of the charge operator
Q=2ie J/d¢, with eigenvalue ne, allowing for changes of charge in units of e. On the other
hand, 2x periodic wavefunctions would only allow changes in units of 2e. Finally, for the
case of ohmic dissipation, there is no phase periodicity in the effective action, given by
(2.27), and nonperiodic wavefunctions are allowed. This is consistent with the statement
that a classical resistive shunt can pass charge in a continuous fashion.

The ability of the system to change electrode charge in units of ¢ has profound
changes on the energy spectrum of the system, whose unit cell in charge space must now
be of width e. This has been derived by various authors in the regime of large E/E;". Fig
2.6 shows a sketch after the calculation of Guinea and Schén (GS) {1986,1987]. The
spectrum is similar in character to the one shown in Fig. 2.3. The horizontal variable, Qy,
which corresponds to g in Fig. 2.3, can again be interpreted as the total charge applied by
some external means to the junction. As we apply more charge, the system charges up
through the parabolic sections of the bands, and discharges by tunneling electrons across
the junction. The main differences reflect the fact that the device can now discharge by
tunneling in units of ¢ as well as 2e,

From (2.37), the dynamic resistance dV/dl approaches infinity as the voltage
approaches zero, at T=0. This is not usually observed in real Josephson devices (including

ours). This is usually blamed on imperfections in the junction barrier or to the existence of

t See, for example, Averin and Likharev [1986], Mullen, Ben-Jacob, and Schuss [1988), Guinea and Schon

[1986,1987].
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Fig. 2.6: Sketch of the energy spectrum as a function of applied ~harge derived
gorha Jose gson junctionin the large charging energy limit. [After Guinea and
chon, 1987.)
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pair-breaking effects, not included in the approach of AES. Useful phenomenological

approaches to include such complications are discussed below, in Section 2.5.1.*

2.4 The Effect of the External Source

In order to measure the system properties, we must apply a current I. There has
been a lot of speculation as to the Vest way to model a typical source of current , as to what
its intrinsic impedance at the high frequencies of interest might be, and whether it should be
treated classically or quantum mechanically. In this section, we assume when necessary
that the system is indeed effectively current biased. In the discussion of our experimental

work (see Chapter 6) this assumption is relaxed for the higher resistance samples.

2.4.1 ¢-space approack

The energy E contributed by the external bias to the Josephson system is the

integral of the power fed into the junction:

d
E = [1(0W (1)t = jl(:)%?'”d: 2.38)

v' ¢ we have used the Josephson relation V = (#/2¢) d¢/d:. Integrating by parts, we

have,

A (A dl
E=506-[5o05d (2.39)

* Guinea and Schon [1986; 1987) for example, use a phenomenological low voltage resistance Rqp.
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Fig. 2.7: The effect of current on the "washboard” potcntial. (a) no current is applied.
(b) I is increased to a value less than the critical current. (c) 7 equals the critical current,

(d) I is decreased until the particle is retrapped
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If the -urrent is constant, the second term in (2.39) is zero, and we can incorporate the

effect cf current bias by including a term equal to

Hg=(hli2e) ¢ (2.40)

to the Josephson Hamiltonian. As a result, the effect of dc current bias, figuratively
speaking, is to tilt the Josephson "washboard" potentiai, as shown in Fig. 2.7. The effect
of a dlt is to lower the effective energy barrier between wells, and to decrease the resonance

frequency of the individual well.

2.4.2 Q - space approach
The charge variable O, can be interpreted as charge applied to the junction by

some external means. As a result we can make the following identification:

dQ,

=4 2.41)

Following Widom et al. [1982], Guinea and Schon [1986, 1987] do not use the approach
oulined in 2.4.1 to include the bias into the Hamiltonian, Instead, they simply include Ox
in the charging part of the Hamiltonian, '

é+Qf
Hy+ H, = TC"_ - E, cos(9) (2.42)

The two charge variables can be interpreted in the following way: Q is an operator and is

the fraction of total charge which does not commute with ¢; it fluctuates due to tunneling

through the junction barricr. Qy is fixed by external constraints, which are assumed strong
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enough to justify ignoring fluctuations in Qy, and treating it as a classical variable. While
QO can be varied continuously, the expectation value of Q can only change in discrete
lumps of size e.

GS begin with the Hamiltonian description of (2.42), include damping, as
discussed in Section 2.3.3, and arrive at the energy band spectrum shown in Fig. 2.6. In
the presence of an imposed current / feeding charge onto the electrodes, the external charge
variable Q advances at a rate dQ,/dt = [. The instantaneous voltage is given by V =
dE!dQy. While the energy spectrum may appear straightforward, the motion of the system
along the energy band may be quite complex, even if we assume a perfect current source
(an assumption which we later relax). If we begin at Qx=0, the system can at first only
charge up capacitively. Once Qy is incresed to a value greater then e/2, however, the
system can follow the lower band or it can proceed upward, continuing to accumulate
charge on one electrode, eventually relaxing to the lower band by having a single electron
tunnel from one electrode to the other. Moreover, if the curmrent is large enough, the system
can Zener tunnel to the higher bands (which corresponds to charging up faster than
electrons can tunnel to equalize the built up charge). Depending on the values of these
various relaxation times, the size of the bandgaps, and the actual nature of the current
source, one can obtain very different dynamics, corresponding to a large variety of possible
I-V curves.

As the current /=dQ/d!t increases, there is an increasing probability that the system
will jump across the bandgap at E ~ E, at the zone boundary (Q,=e), rather than
~c:itinuing to cycle up and down in the lower bands. By simply transcribing the usual
calculation of this Zener tunneling probability to the present context, we have previously

shown {Iansiti et al., 1987a] that the probability of a jump on each cycle is

N s ikt e e
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2
7 E, p[ 12]
Poener = €% TIED) =en-T

8E °(_2—e (2.43)
where we define the "Zener" current Iz by
Iz = meE PI8RE, (2.44)

It will be shown in Chapter 6 that these arguments will lead to an estimate for a reduced

critical current, given by [z,
2.5 The Classical Limit

We have discussed the different terms which comprise the Hamiltonian of a
Josephson junction. We have also discussed some of the quantum mechanical approaches
which have been applied to the system. For conventional junctions (with Ey >> E;),
quantum fluctuations in ¢ are very small, and the Hamiltonian can be treated classically.
This section gives a basic treatment of Josephson junctions in the classical limit, which will

be used extensively in the remainder of this report. We rewrite the complete Hamiltonian:

0 . & '
H = o+ (- I, cos ¢ = 1) + H($, ¢ {x}) (2.45)

where H, represents is the environment term, which may be a function of both the phase
and the environmental coordinates {x}. The "unfluctuated” critical current is I, = (2e/#)
Ej. We can then obtain the classical Hamilton equations of motion, in the conjugate

variables Q and ¢.
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O=1-1,sin¢g+1(¢, ¢,{x) (2.46)
5o2e2

Since the voltage V = Q/C, (2.47) is a statement of the ac Josephson effect. (2.46) can be
interpreted as a current conservation equation; it provides the basis for the resistively and

capacitively shunted junction (RCSJ) model [Stewart 1965, Mc Cumber, 1968].

2.5.1 The RCSJ model

The combination of the capacitive, Josephson, and resistive channels as parallel
circuit elements is the essence of the RCSJ model. Equation (2.46) implies that the charge
fed onto the junction elecrodes by the source at a rate / can be carried off by either the
Josephson or the quasiparticle "channels”, or it can be stored on the capacitor C. This
implies the simple picture of three parallel circuit elements shown in Fig. 2.8. The
capacitor is the simplest part of the circuit, the only one that is intrinsically linear. The
supercurrent-carrying Josephson channel is more complicated

. . (2
I,=],sin¢=1, sm(Te dex) (2.48)

where I is the supercurrent. (2.48) shows that the Josephson channel is inductive in

nature. By differentiating (2.48) with respect to time, one can obtain the characteristic

Josephson inductance,
L. = N S
I 2, cos ¢ (2.49)

The last channel, the quasiparticle contribution, is the most difficult one to

characterize. The effect of the quasiparticle environment may be divided into two parts.




o

Fig. 2.8: Schematic of the equivalent junction circuit used in the RCSJ model. The
Josephson, quasiparticle and capacitive contributions are viewed as three different channels
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One one hand, there is the frequency dependent response to an excitation current or
voltage. On the othcr hand, at finite voltages and temperatures, fluctuations in the
dissipative quasiparticle "bath" have a significant thermal noise or shot noise contribution
to the dynamics of the device.

The characteristic quasiparticle response was derived by Bardeen [1961] and
Cohen, Falicov, and Phillips [1962]. In the latter's approach, the current through the
quasiparticle channel is expressed as an integral over the product of densities of states on
each side of the tunneling barrier. Their approach, originally developed for superconductor

- insulator - normal metal (SIN) tunneling, can be applied to the SIS case, with

Ip=A _jITIZNI(E)Nz(E +eV)F(E) - f(E + eV)]dE

_ 1 |E]| |E + eV |
~ eR 2
" eE -8 JErev) - £

f(E)-f(E + eV)]IdE
(2.50)

where A is a proportionality constant, /T/2 is the square of the tunneling matrix element
(assumed energy independent) 4 is the superconducting energy gap, V is the bias voliage,
and f is the Fermi function. The simple interpretation of this result, known as the
"semiconductor model” [see Tinkham, 1975] is that the quasiparticle current is proportional
to the sum over all states of the product of the probability of having an excitation on one
side of the barrier, times the probability of finding an empty "slot" on the other side. Few
quasiparticles are available at low temperatures so that, for V < 24, Igp is very small, and
the dynamic resistance is very high. This response is sketched in Fig 2.9. At T=0, the
dynamic resistance dV/dI approaches infinity at low voltages. In a more complete
treatment, as outlined briefly above in Section 2.3.3, the ideal low-voltage response is

shown to be capacitive (also at T=0), with a small characteristic capacitance given in

(2.38).
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Fig. 2.9: Sketch of the quasiparticle I-V response.
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The ideal situation outlined in the preceding paragraph is not usually encountered
experimentally. In practice, junctions are imperfect, and some other mechanism is present
which at low temperature gives a current larger than the ideal quasiparticle response,
introducing additional dissipation. The nature of possible additional mechanisms is in
some dispute, and mayn be different depending on the experimental situation: microshorts
in the barrier, pair-breaking effects in the superconducting electrodes, and the effect of
Andreev reflections have all been suggesfed. A good phenomenological approach, which
has succeeded even in cases where high accuracy was needed [see, for example, Iansiti et

al., 1985), is to simply approximate the quasiparticle response by a piecewise linear

resistor, so that

|4

I,=—5—

R(V) 2.51)

with all of the environmental degrees of freedom absorbed in R(V). R(V)is taken to be

A+ A
Rn, | %4 >-'—1—e———2-
RV )=
R A1+Az
p Vs—= (2.52)

where R, is the normal resistance, and Ry, is a phenomenological leakage resistance. The
temperature dependence of the leakage term is found (at least for our samples)* to be well

approximated by the form

Ry-UT) = R-1(0) + Ryle-diT (2.53)

# See the experimental discussion in chapter 4.
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where the second term's temperature dependence reflects inirinsic quasiparticle thermal
excitation.

Finally, we must take into account the contribution of the noise fluctuations in the
resistive channel. The autocorrelation function for a tunnel junction was derived by Dahm,

et al. [1969] to be given by, at low frequencies ® << eV,

2k, T
A A LY T eV ’ Y B ’
(' (e+ 1) = el ¥) cor FHT ) ——— Sl 8) st

where R(V) is defined here as Vil (V). Excellent agreement with experiment has been
obtained by using the simplified expression for R(V) given above in (2.52) {Danchi, et
al.,1984; Iansiti, et al., 1985]. As shown in (2.54), the autocorrelation function reduces

to that of the Johnson noise formula at low voltages.
2.6 Junction Dynamics

We can now use the tools developed in the previous sections to discuss the most
basic dynamics of a Josephson junction. We limit the present topics to relatively well
known techniques, which have succeeded in modeling the behavior of conventional low
resistance, high capacitance junctions. We will thus form a base for the discussion of our
experimental results, given in Chapters 5 and 6, after the presentation of our observations
in Chapter 4.

‘We begin our present discussion in the zero temperature classical limit in Section
2.6.1. In Sections 2.6.2 and 2.6.3 we discuss some simple consequences of significant

(but still small) contribution of thermal and charging energies, respectively.
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2.6.1 The classical regime

In this classical description, the system can be effectively visualized (see Fig. 2.10)
as a particle lying at the bottom of a well of the "washboard" Josephson potential -E; cos ¢
[Fig. 2.10 (a)]. The effect of the current bias is to tilt the potential, by adding a term -
(fi/2e) I$ [Fig 2.10 (b)]. Atlow currents the particle is trapped in the well, and the average
of the voltage V=(#i/2e) dd/dt is zero. Atl = I, [Fig. 2.10 (c)] the tilt is enough to allow
the particle to escape. After having escaped, the particle will continue to run down the
washboard, dissipating energy at a rate <V2/R(V)>. The average voltage in this regime
(corresponding to the terminal velocity in our mechanics analog) is such that the loss in
potential energy equals the loss due to dissipation (friction). If we now decrease the
current, the particle will not immediately retrap in a Josephson well, since it has inertia.
The retrapping current /, is less than /,,, and is approximately (if the damping is low) given
by the current at which the kinetic energy is eyual to the energy barrier to be surmounted

[Fig.2.10(b)]. Stewart [1966] and Mc Cumber [1966] obtain:

4 2e
I, =+ , B.= K IcoR c
\/ B " (2.55)

We believe it is reasonable to substitute Rz for R in B, in this case. To justify this, it is

necessary to further examine the physics behind this formula for /,. In the presence of

damping, the system loses energy at a rate dE/dt = - V2/R. V = (fi/2e)d¢/dt, and the total

energy E stored in the capacitance, is 1/2 CVZ. By combining these relations, one can write

& _
dp

JZ(E+E ; ¢os @)

T ZeR 2.56)
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Fig. 2.10: Typical underdamped RCSJ I-V characteristic. The points labeled (a)

through (d) correspond to the regimes sketched in Fig. 2.7 (a) through (d).
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in which R is to be understood as being a function of the instantaneous voltage, which is
determined by integrating this equation forward in ¢. The condition for /I, is that, if the
particle starts at the top of one maximum of the tilted washboard, where it has zero
velocity, it should just exactly reach the next maximum, again with zero velocity. If the tilt
(i.e., current I) is any greater, the representative point will run away at a rate limited by the
damping; if it is any less, it will be trapped in the next minimum, For this critical trajectory,
the voltage oscillates between zero (at the maxima) and a maximum value such that 1/2 CV?2
= 2Ej, corresponding essentially to the plasma frequency. The average voltage, as read off
the I-V curve, is evidently less than 2A/e. Theoretically, one expects the quasiparticle
conductance to be only weakly dependent on voltage for eV < 2A. Accordingly, it is
plausible that the gverage R determining /, should be quite similar to the measured Ry, at

the average voltage.

2.6.2 Effect of small thermal fluctuations

The effect of thermal fluctuations on the dynamics of a Josephson device has
received extensive experimentalt and theoretical® attention, in the regime of Ej >> E..,,
kgT. We limit our discussion to the underdamped case, relevant for our samples.

Since we are still in the classical regime, we will still use the particlé-in-the-
washboard analogy of Section 2.5. The basic idea is that now the particle can be thermally
activated out of the Josephson potential well, at a current below /., [see Fig. 2.11 (a)].

The escape rate is usually given by an expression of the form

t See, for example, Fulton and Dunkelberger [1974], Naor, Tesche, and Ketchen [1982], Danchi et al.
[1984), Silvestrini et al., [1988], and Silvestrini, Liengme, and Gray [1988].
* See Kramers [1940]. Ambegaokar and Halperin [19€9], P.A. Lee [1971), J. Kurkijtirvi [1972], Biittiker,

Harris and Landauer [ 19831, and Barone, Cristiano, and Silvestrini [1985].

e e e s A



49

i

3

P
L1
1
¥
¥

(b)

Fig. 2.11: Sketch of the two possible mechanism of escape from a well of the
Josephson potential: (a) thermal activation. (b) quantum tunneling
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AU

~1_ % E,T
T =—2—”-F(EJ,R,C,T)e @2.57)
where @4 is the resonant frequency of the well, AU is the barricr height, and F accounts
for the effect of damping. For! << l¢p, AU = 2Ey, and au= @y = (1/AN8E/Ec)2. After
the particle is activated out of the potential well, it will keep running downhill, since the
system is underdamped, and the voltage will approach the energy gap value. The measured
critical current I, will thus be less than I, and will have a probabilistic distribution of
values, dependent on the sweep rate. If we assume that F will have a value of order unity,

one expects switching to occur when [lansiti, et al., 1988b]

k, T o, & )
B prc
1c=1ct{1— 7E, "'(41/ dt]

(2.58)

where &, / (dl/dz) is the time spent sweeping through the switching distribution. A more
careful analysis by Danchi [1984] gives the same result, apart from small numerical
refinements. Thus /I depends logarithmically on the current sweep rate,

Because this escape is a probabilistic event, the /. measured in an actual experiment
is different on each current sweep. The distribution of measured 7, values has a
characteristic width &/, mentioned above, which is proportional to the extent of the

depression of /. For the dependences cited above, one finds

2
_3-( I, — 1)

&c = —._a,—;&T-
In a
dt (2.59)
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2.6.3 Effect of small quantum fluctuations

As discussed in Section 2.1, if the charging energy becoraes significant, we expect
to see quantum fluctuations in ¢. The first clear manifestation of this was the
measurement* of the macroscopic quantum tunneling (MQT) of the phase through the
potential barrier of the tilted washboard potential, shown schematically in Fig. 2.11 (b).
This has been studied theoretically by various authors,! and we have already discussed the

tunneling calculation in Section 2.3.2. A formula for the tunneling rate is given by (2.31).

The effect of tunneling on the I-V response of the junction is similar to the effect of thermal

activation: I, acquires a distribution of values and is less than /.

2.7 Summary

In this chapter we have discussed some powerful theoretical concepts which form
the basis for a description of the Josephson junction. We have developed a model
Hamiltoaian for the system, and analyzed its implications in a few well-known situations.
We have thus developed a theoretical basis for the analysis of our observations. After
presenting our experimental techni~ s and results, we will resume the theoretical
discussion in Chapters 5 and 6. i his current chapter will then serve as a springboard for
the discussion of the experimentally relevant parameter regime, in which the charging

energy is comparable to or greater than the Josephson energy.

# See den Boer and de Bruyin Ouboter [1980], Prance et al. [1981], Voss and Webb [1981), Jackel et a/.
[1981], Washburn et al. [1985], Schwartz et al. [1985), Martinis, Devoret, and Clarke [1985), Devoret,
Martinis, and Clarke [1985).

1 See, for example, Caldeira and Leggett [1981; 1983}, Chang and Chakravarty [1984], Grabert (1985], and
Hiinggi [1986], and references therein.
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CHAPTER 3 ]
EXPERIMENTAL TECHNIQUES

This chapter describes the most important experimental tehniques used in the
fabrication and measurement of the properties of the samples. It is divided into two
sections. We begin in Section 3.1, by describing the lithography and deposition methods

' involved in the fabrication of the junctions. We continue in Section 3.2 with a description

of the measurement electronics, and a brief account of the low temperature techniques used

in the measurements .
1
3.1 Fabrication Techniques
The aim of the work reported here was the study of devices whose ratio of charging
to Josephson energy is of order one. This goal created challenging requirements for the
r

patterning techniques used in the fabrication of the junctions. The Josephson energy Ej is
given at low temperatures in an ideal junction by the expression E;=(h/8¢2)(A/Rp). The [
charging energy E is given by ¢2/2C. We assume that ]

r :

4, 4

C=e,,e,i;- and R, = (const )} )

oy

where A is the area of the device, d is the insulating barrier thickness, and d, is a constant
of order 1A. We can then express the charging energy as a function of the junction area &
and thickness. Assuming a relative dielectric constai ¢, = 6,* we reach the following

estimate: f

-y

* See Wang and Gailey [1978], and Danchi [1983]
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where we have assumed a reasonable barrier thickness d = 20 A. In order to be able to
measure charging energy effects, we need E /kp at least of order the accessible temperatures,
In order to obtain E-/kg > 1K we need A < 0.04 (um)2. To obtain a junction of such small
area, the fabrication of electrodes of width less than one micron is necessary. Since Ej o<
1/Ry, depends exponentially on the barrier thickness d, where E, depends only linearly, we
can obtain E, ~ E; by adjusting the barrier oxidation time.

This is the first thesis written in this research group which reports studies of thin
film devices of submicron dimensions. The fabrication of submicron size junctions required
the adaptation of a new set of patterning techniques. These were mainly based on electron -
beam lithography, which allows the exposure of very fine lines in organic polymer resists
without incurring the minimum size limitations of photolithography, set by the wavelength
of light.

The first step in the sample fabrication is the patterning and evaporation of pads, to
connect the fine junction features with the large scale leads necessary for the measurements,
Next, the junction fabrication method is similar ‘o the "overlap" junction methods developed
at Bell laboratories!. The method begins with the preparation of a submicron suspended
bridge of resist material. The first junction electrode of Sn is then ¢vaporated at an oblique
angle. After the first eiectrode is oxidized, the second electrode is evaporated at a different
angle, completing the junction under the bridge of resist. An outline of the fabrication
process is sketched in Fig. 3.1. The details of the fabrication are given below, in Sections

3.1.1, 3.1.2, 3.1.3, and 3.1.4.

§ See, for example, Dolan [1977], Dolan et al. [1981], Hu, Jackel, and Howard [1981].
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Fig. 3.1: Outline of the fabrication process. (a) After having evaporated contact pads, a
suspended bridge of resist is patterned. (b) The bottom electrode of tin is evaporated at
a 45" angle. (c) The oxide barrieris grown by a dc glow discharge. (d) The tin counter-
electrode is evaporated. (e) The completed sample is shown.
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3.1.1 Fabrication of contact pads

The small features nccessary for the corstruction of submicron junctions are
patterned with electron beam lithography, which has a characteristically small field of view
(< 100 pm x 100 um). Therefore, larger contact pads are necessary to connect the junction
area to the leads on the dilution refrigerator sample loading slug. The contact pads were
patterned by conventional optical lithography, using a liftoff technique. The essence of the
liftoff technique is sketched in Fig. 3.2. The substrate is first coated with a photosensitive
material known as photoresist (PR) and exposed through a mask made of chrome evaporated
on giass. The photoresist is then developed (the exposed PR is dissolved). Finally metal is
evaporated and the remaining photoresist is removed, defining the desired pattern.

Since the yield of the whole fabrication process is usually low, the best approach is
the parallel patterning and deposition of as many sets of contact pads as possible, to make
sure that a working sample is obtained by the end. After having decided that a two inch
wafer size was convenient given the constraints of the available equipment, we designed a
mask that would fit sixteen sets of pads in a 1" x 1" square in the center of the wafer. Each
set of pads was 1/4" x 1/4", to conveniently fit on the sample loading slug of the dilution
refrigerator. A sketch of the pad pattern is shown in Fig. 3.3. The mask was made by
Advance Reproductions, Inc., located in Willows Industrial Park, 100 Flagship Drive,
North Andover, MA 01848,

Because the minimum linewidth on the pad mask was as large as 20 pm, this part of

the process is not particularly difficult. Two specific techniques have been used with
success: a fast but sometimes unreliable one-layer technique involving a chlorobenzene
soak, and the more time consuming but reliable three layer photoresist - aluminum -
photoresist (PR-Al-PR) technique. Since the latter is described in detail in Danchi's thesis

[Danchi, 1983], we will not dwell on it here. For the chlorobenzene technique, oxidized Si
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Fig. 3.2: Outine of the liftoff process. (a) The ghotorcsist is spun on the substrate.
(b) The coated substrate is exposed with near UV light through a chrome-on-glass mask.
(c) The photoresist is developed. (d) Metal is evaporated. (¢) The photoresist is dissolved
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Fig. 3.3: Sketch of the mask used in the fabrication of the contact

pads. The biowup shows a single set of pads.
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wafers are first cleaned® and coated with about 1 pm of Shipley photoresist (AZ 1400-27,
spun at ~ 4000 rpm), and baked at 70° for 20 minutes. After cooling off for at least ten
minutes, the wafers are exposed wit"1 the Karl Suss mask aligner in the soft contact mode.
Next, the wafers are soaked in new chlorobenzene for 10 minutes. The wafers are then
developed in a 1:5 solution of AZ 351 developer and water, for 5 to 10 minutes. The wafers
are mounted in an evaporator, and coated with 50 A of Cr followed by 400 A of Au.t
Finally, the liftoff is completed by soaking the samples in acetone. The pads are now ready

to be cleaned and coated with the resist for the next step of the fabrication process.

3.1.2 Electron-beam lithography: general concepts

Electron-beam lithography is the exposure of patterns in an organic resist material by
means of a narrowly focused beam of electrons. By using different accelerating voltages,
resist materials and substrates, different characteristic linewidths and resist profiles are
achievable

Polymethylmethacrylate (PMMA) is the most commonly used resist in electron-
beam lithography. PMMA, like most radiation-sensitive resists, is a polymer consisting of
a long linear chain, the “backbone", attached to a aumber of sidegroups. PMMA is
dissolved in a suitable solvent (such as chlorobenzene,) spun on the substrate, and baked.

The solvent evaporates, and the PMMA goes from being a solution of neatly separated

* The cleaning process was as follows: Heat for 5 minutes on hot plate in a 1:2 solution of photoresist
stripper and water. Transfer mixture to ultasonic cleaner for 10 minutes. Rinse in running 18 MQ water for
15 minutes. Immerse for 10 minutes, respectively, in trichloroethylene, acetone, and methanol, and agitate
with the ultrasonic cleaner.

1 Iu is essential to fq1 the liquid nitrogen cold trap of a diffusion-pumped evaporator, even for this simple
process, to avoid contaminating the wafers with pump oil.

§ For a complete reference, please see Wittels [1980.]
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molecules, to a tangled web of polymers forming a mat which uniformly covers the
substrate. The resist is then exposed with an electron-beam, which attacks the sidegroups,
and severs them from the backbone.* These sidegroups are easily removed, leaving behind
a highly porous mass which the developer can infiltrate to dissolve the main body of the
resist. Th‘eruncxposed PMMA lacks the porosity, and the action of the developer is much

slower. Developers usually consist of two ingredients, The first is the solvent, and the

faster it can infiltrate the PMMA mass, the faster it will dissolve it; as a good rule of thumb,
the higher the molecular weight of the solvent, the slower the diffusion, and the longer the
*‘ development process. The second ingredient is a nonsolvent which affects the rate at which
the PMMA goes from a gel to a liquid, by adjusting the enthalpy of the solution.

The interaction of these various processes gives rise to a value of "critical dose” D,.

If the dose received by the resist is greater than D, the resist will be dissolved by the

developer. In electron-beam lithography, dosage is usually given in units of charge/area; in
our system, a typical dose (with a 10kV electron-beam) is in the neighborhood of 10
pC/(um)2. It is possible to increase the sensitivity (or decrease D) of PMMA, by changing
its molecular weight and by copolymerization with methacrylic acid [Wittels, 1980]

’ A sketch of the exposure process is shown in Fig. 3.4, The ultimate resolution of
PMMA is the size of the basic molecule, being of (I)rdcr aS0A (depending on the molecular
‘ weight.) Apart from the size of the resist molecule (very small by our standards) other
factors can strongly influence the width of the exposed pattern: the width of the focused
beam of electrons, and the forward and back scattering of electrons. As the electrons travel
through the resist, they scatter against the resist molecules, broadening the size of the beam,
Moreover, once the electrons reach the substrate, they scatter back into the resist, interacting

with the resist molecules, and broadening the exposed arca. These two phenomena are

,: # If the PMMA is overexposed, on the other hand, the polymer units crosslink in an essentially insoluble

H mat.
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Fig 3.4: Sketch of the electron beam exposure process, including forward and
backscattering effects. A realistic simulation of the phenomenon is shown in
Wittels (Fig. 1.15,1980].
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known as "forward scattering” and "backscattering"”, respectively. The two broadening
processes are sometimes modeled as giving rise to two concentric Gaussian distributions of

beam current intensity [Wittels, 1980]

Jn=tate e s pg et ) (33)

where I/a and 1/ are the characteristic widths of the forward and back scattered electron

beam components. The dose at any point is then given by multiplying (3.3) by the exposure
time. The upshot is that the dose received by the resist molecules will vary with depth and
with the voltage of the electron-beam: If the voltage is high, there will be less forward
scattering, and the electrons will penetrate further into the substrate before backscattering.
Therefore, the backscattered electrons will be spread out over a wide area, and might not
contribute much to the dosage received by the resist molecules. A high beam voltage will
tend to minimize the exposed width, and give rise to a relatively vertical resist profile. If the
voltage is low, on the other hand, forward scattering will broaden out the beam, and
backscattered electrons will be restricted to a smaller radius, and thus effectively contribute
to the dose received by the resist. Therefore the linewidth will broader, but the resist profile

will have a much more pronounced "undercut", i.e. the exposed line will be broader at the

bottom than at the top.

3.1.3 Electron.-beam lithography: junction patterning procedures

The fabrication of an overlap junction requires the patterning of an overhanging
bridge of resist (as shown above in Fig 3.1.); A line is exposed in the resist, leaving a small
gap in the middle. If the undercut is largc enough, and the gap small enough, the resist will
be exposed through the gap rcgion in the lower resist layers, but not in the top layers. This

will leave a bridge of resist after development (see Fig 3.5). The successful fabrication of
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submicron overlap junctions thus requires the capability to pattern lines of submicron width

while at the same time obtaining the large undercut necessary foi the resist bridge. We

1 et St ey

chose to solve this problem by using a low beam voltage (10 kV) to maximize the effect of

t ackscattering to create an undercut. We also used a two layer resist scheme, with a thin

layer of PMMA on top and a thick bottom layer of the more sensitive PMMA/MAA
(polymethylmethacrylate/methacrylic acid), to further enhance the undercut profile. The

idea is that a gaussian beam of electrons will expose a narrower hole in the less sensitive top

o PG i A st

layer than in the more sensitive bottom layer, creating the desired strongly undercut profile.
Furthermore, we used very low exposure currents, to minimize the number of resist
: molecules at the top of the resist structure to receive the critical dose, and to lengthen the
development time. The long development time, (~ 10 minutes,) allowed the close
monitoring of the sample under an optical microscope; the development was stopped as soon
as the sample appeared completely developed, and before the exposed lines could be
broadened by overdevelopment.

The process begins by cleaning the newly prepared contact pads (patterned in a 16 x
16 array on a 2" wafer) by immersing them 10 minutes each in TCE, acetone, and
methanol, in the ultrasonic cleaner. Next, the bottom resist layer is spun. This 1, er is
chosen to enhance the undercut, and easc the liftoff process. Therefore, it must be
composed of a very sensitive resist, and it must be thick enough, for the deposited metal to
lift off without tearing at the edgest . The bottom layer is thus composed of PMMA/MAA,
(available in beads from Esschem, dissolved 0.12 g/ml in glacial acetic acid) and is spun at a
very slow speed, 2000 or 3000 rpm, giving rise to a resist thickness of about 0.4 - 0.6 um.
The wafers are then baked at 180° C for one hour. After letting the wafers cool for at least

ten minutes, the second resist layer is spun.

T As a rule of thumb, to aveid tearing, the resist thickness should be at least three times the thickness of
the film,
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The purpose of the top resist layer is to maximize resolution, to obtain the minimum
linewidth. A less sensitive resist is therefore used, (PMIMA of 950 K molecular weight,
dissolved at 6% in a chlorobenzene solution, available from Kﬁ. Inc., 1170 Sonora Ct.,
Sunnyvale CA 94086), and spun on in . thin layer of about 0.2um, at 8000 rpm. The
wafers are again baked at 180° C for one hour. The wafers are then diced in 1/2" x 172"
pieces each containing four sets of pads, to fit in the scanning electron microscope (SEM)
field of view at the lowest magnification, and taken to the SEM for exposure,

The heart of our electron-beam exposure system is a JEOL 35 U scanning electron
microscope. To control thz beam, and scan over the desired patterns, we interfaced an IBM
Instruments 9000 microcomputer to two high-quality sixteen-bit Analogic digital-to-analog
converters, which in turn were attached to the external XY input of the SEM. A set of
machine language routines, written by Dr. H. Rogalla for the 68000 processor of the IBM
Instruments 9000 were used to generate the coordinates for the XY control of the SEM
beam. These were transmitted to the external D/A converters, which in turn transmitted an
analog control signal to the SEM. A sketch of the electronics controlling the scanning
electron microscope used to expose the resist is given in Appendix 1.

The two layer resist stencils were mounted on the SEM stage with silverpaint. With
a beam voltage fixed at 10 kV* , and a beam current of about 5 pA, the focus, astigmatism,
and aperture alignment SEM settings were first optimized while looking at silver-painted
areas. This was necessary since the only large distinguishable features on the wafers were
the Cr-Au pads, which were covered by two layers of resist, and were therefore difficult to
see sharply with the low 10 kV beam voltage. The beam focus was then re-optimized while

looking at dust or a scratch in the resist near the center of the pads. Next, the field of view

* Depending on the age and alignment of the SEM filament, occasionz lly it was not possible to obtain
enough beam current at 10 kV to see the contact pads. in this case, the beam voltage was stepped up to 11
or 12 kV.
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Fig. 3.6: Sketch of SEM field of view at a magnification of 1000 x, showing the
contact pads and the exposed pattern,
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was aligned with the center of the pads* , as the magnification was increased to 1000 x. The

SEM beam was then blanked off, and control was given over to the IBM 9000 to execute the
exposure of the sample. A typical setting for the exposure time per pixel was about 200 ps.
Fig. 3.6 shows a sketch of the field of view at 1000 X, and of the pattern exposed by the
beam. The width of the gap in the center of the pattern, which defines the location of the
resist bridge was typically 125 pixels.

The samples were developed in a 1:5 mixture of methylisobutylketone (MIBK) and
isopropanol. Typical developing times ranged from five to fifteen minutes. The sample
was closely monitored during this long process, and the development was stopped as soon
as the resist bridge structure appeared developed under the optical microscope. The resist 1;

stencils were then ready to be mounted in the evaporator.

3.1.4 Evaporation procedures
While the resist stencils can be safely stored for weeks, the completed samples must

be cooled and stored at liquid helium temperatures within six to twelve hours of the

evaporation, to avoid the likely growth of metallic whiskers shorting the oxide barrier. Asa {
result, the evaporation process must be timed carefully with the planned availability of the

dilution refrigerator, needed to perform the measurements.

T

The resist stencils were mounted on the tiltable stage of a cryopumped evaporator,
the tilt being adjustable by a control outside the vacuum chamber. The chamber was pumped
down to a pressure below 4 X 10-7 torr. Next, the sample stage was cooled by flowing 1
liquid nitrogen for at least one hour, which would further crvopump the chamber, and cause ﬁ
the pressure to drop below 2 X 10-7 torr. The stage was then tilted by an angle of 45° from

normal incidence, and the first electrode was evaporated. In carrying this out, the evaporator

# Usually the slow or even very slow SEM scan settings were necessary to se¢ the pads well enough to

align them.
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boat, containing 99.999% pure Sn was heated slowly at a low setting for about five minutes.
Then, tlw power fed to the boat was gradually increased, until a very high and stable
evaporation rate of about 300 A/sec was achieved. The shutter was then opened, to deposit
about 700 - 800 A of Sn to make up the bottom electrode of the junction.

After completing the first evaporation, the chamber was twice flushed with 20 - 40
mtorr of oxygen, 99.95% pure. The oxidation of the bottom electrode was then completed
in a dc oxygen plasma, driven by a source voltage of 1.1 kV. The oxyge: pressure was 40
mtorr. The oxidation time varied from 30 seconds to five minutes, depending on the desired
thickness of the barrier. The chamber was again pumped down to below 4 x 10-7 torr.
After changing the stage tilt to about -45°, the top electrode of Sn was evaporated, using
warmup times and deposition rates comparable to those of the bottom electrode. The top
electrode was between 1000 and 1200 A thick. If the top electrode was not made thicker
than the bottom electrode, the top electrode would often break near the junction area, on the
edge of the bottom electrode.

After the evaporation was completed, the sample was warmed up slowly.
Typically, it was left to warm up in the chamber for about four hours. After this,
approximately 1 torr of nitrogen exchange gas was bled into the chamber, to accelerate the
final warming stages. After waiting two more hours, the chamber was vented to
atmosphere, and the sample was unloaded. The sample was completed by lifting off the
unwanted tin, by squirting the wafer with acetone. A quick methanol rinse, to wash off the
acetone residue, would complete the sample preparation,

Fig. 3.7 is a scanning electron microscope photograph of a typical sample. The
active junction area is the overlapping region between the two thin fingers of tin, at the center
of the photograph. The bottom electrode appears fuzzier than the top electrode, since it is
not as thick. Figs. 3.8 and 3.9 are photographs of an array of eleven small tunnel junctions,
fabricated by patterning five overhanging resist bridges in a row. Fig. 3.9 is taken at a low

enough magnification to also show the tips of the contact pads.
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3s (b3 0381 00010

Fig. 3.7: SEM photograph of a previously measured sample with area ~ 0.1(m)2, normal
resistance Ry = 34 k42, and capacitance C =2 fF. The junction is the small overlapping
region between the two "fingers" of tin, in the center of the picture. The photograph was

taken at an angle of 45°. The horizontal bar is one ym long,

rea gl e

Ay

o

-
g

-rr




TV A

Fig. 3.8: SEM photograph of the eleven-junction array. The horizontal bar is 10 tm long.




Fig. 3.9: Close-up of the eleven-junction array. The horizontal bar is 10 um long.
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3.2 Measurement Techniques

3.2.1 Mounting procedures

The junctions were measured in an Oxford Instruments model 200 dilution
refrigerator. One of the main advantages of this refrigerator is that it has a top-loading
facility., A sketch of the top-loading "slug" is shown in Fig. 3.10. The sample was
mounted on the slug, and the leads were attached to the pads by pressed indium dots. The
slug is attached to the refrigerator by screwing it into the bottom part of a copper tail that is
thermally anchored to the mixing chamber. Elecirical contact to the sample is made by
means of the vight slip-rings. To load the slug, some liquid helium is first syphoned from
the main bath of the dilution refrigerator to precool it. The slug is then quickly loaded in

place, and can be cooled down to millikelvin temperatures in a few hours.

3.2.2 JAeasurement set-up

A sketch of the measurement set-up is shown :n Figs. 3.11 and 3.12. The samples
were isolated from the environment by RLC filtering composed of 5 kQ ccld resistors,
mounied on the top loading slug and the extensive distributed inductance and capacitance of
the leads. The leads were were composed of 40 gauge insulated Cu wire arranged in
ribbons. The lead capacitance was measured to be about 1 nF. In several locations, the
leads were tightly wrapped on solenoidal heat-sinking posts, which are believed to add
significantly to their inductance. The measured cutoff frequency of the leads was below
1kHz. The addition of Murata-ERIE rf low pass filters was found to add unwanted
resonances in the leads, and better performance was obtained by the distributed RLC
filtering. By using an audio-frequency spectrum analyzer, the measurement set-up was

extensively tested for low frequency noise, and great eftort was spent to minimize its

contribution. The dilution refrigerator and measurement apparatus were enclosed in an
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are attached with
indium dots)

_ I kQ resistors

Fig. 3.10: Sketch of
the top-loading slug.
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electrically screened room, to minimize rf pick-up. Several more layers of shielding were

provided by the various copper heat shields of the dilution refrigerator set-up (see Figs.

3.11 and 3.12).

To minimize the extrinsic noise fed into the sample by the measuremerit set-up, the
latter was kept very simple. For the I-V curve measurements, we relied on a simple

current souri:e, composed of a dry battery whose voltage was adjusted by a variable voltage

divider, and a 500 MSQ current-limiting resistor. The voltage signal was amplified with a

Princeton Applied Research PAR 113 preamplifier and fed into the Y inpui of an analog
Hewlett Packard XY recorder. The current fed into the sample was measured by taking the
voltage across a precision series resistor and, after it was amplified with another PAR 113,
the signal was fed ito the X input of the XY recorder. One of the two sample current
leads was grounded ar the current source. Care was taken to avoid ground loops in the
measurement setup, and shiclded twisted pair (Belden triax) cable was used in all
connections to the sample. Using a 500 MQ limiting resistor and a 1 MQ measuring
resistor, we were able to produce angl measure currents of a few pico amperes,

A more complex computer-controlled ser-up was also built, and used successfully
for preliminary measurements in a conventional liquid helium pumped rig. A schematic of
the computer-controlled current source, which has also been used by others, is given in
Appendix 2. Its low frequency noise performance, however, was inferior to that of the
simple setup described above, and it was not used for the most delicate low temperature
measurements described in this report.

The dV/dI measurements were made using a PAR 124 lock-in amplifier, and a
home-built voltage-current converter and level-shifter. The good noise performance of this
set-up allowed the measurement of dV/dl vs [ curves with excitation currents as small as 5

PA, using averaging time constants below 1 sec.
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3.2.3 Low temperature considerations

The temperaturs of the mixing chamber was measured by means of calibrated
resistors. Between 4 K and 250 mK we used a factory-calibrated germanium resistance
thermometer (GRT) obtained from Lake Shore Cryotronics. Below 250 mK we used
Speer carbon resistors, which were milled on one side to provide a flat surface, and
pressed against the mixing chamber surface, using cigarette paper to provide a layer of
electrical insulation. The carbon resistors were calibrated in situ in each cool-down using a
National Bureau of Standards fixed point thermometer, consisting of five different
superconductors of known transition temperatures between 250 mK and 20 mK.

To ensure that the temperature of the mixing chamber is indecd a reasonable guess
for the sample temperature, we must examine some heat sinking considerations.* There are
two primary contributions to the heat-sinking of the junction: heat-sinking through the
leads and through the substrate. In considering the first term, the bottleneck in the heat
transfer process is given by the thin and narrow superconducting leads 1a the inunediate
proximity of the junction. For the sake of an order of magnitude estimate, we assume that
this bottleneck is a tin wire of diameter 0.2 um, and length 10 pm. At temperatures below
0.5 K, the thermal conductivity of tin is primerily due to phonon contributions, and is
proportional to T3. A reasonable value [Lounasmaa, 1974} at 0.3 K is 10 W/Kcm. If we
multiply this value by the cross-section of the wire, and divide by the leagth, we obtain the
maximum power aliowed through the sample, to maintain a given temperature error to be of
order 4 x 10-10 W for an error of 1 K.  Since the conductivity is proportional to T3, at 30
mK this value is reduced to 4 x 10-13 W/K. Therefore, if we can tolerate a maximum
temperature error of 2 mK, we can feed a maximum of about one fW to the junction. To
measure a critical current of order 200 pA, given that the sample has a low current

resistance Ry~ 10 k€2, the power fed to the sample is of order 0.5 fW. The heat sinking of

* Good references are Lounasmaa [1974] and Richardson and Smith [1988].
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the junction through the leads should thus be eficctive, and the temperature of the sample
should be within a few mK of the temperature of the mixing chamber.

A good approximation [Richardson and Smith, 1988] for the thermal boundary
resistance from a metallic to an insulating medium is 30 -3 (K4cm%/W). At0.3 K, for a
0.2 ym x 0.2 um interface cross-section, the approximate area of the junction, the
maximum power allowed for a given temperature error is thus of order 4 x 10-11 W/K,
which is about a factor of ten worse than the estimate due to the lead contribution. It thus
appears that the leads are a better heat-sinking mechanism than the substrate. Naturally,
however, the two mechanisms interact with each other, and the heat can be carried off part
way though the leads and part way through the substrate. The conclusion is this: if we
only feed a power of order 1 femtowatt to the junction in order to measure its properties,
we should be relatively safe in trusting the readings of the thermometers on the inixing
chamber. This is confirmed by the sharp temperature dependence of our measuremeriis,
reported in Chapter 4, all the way down to below 20 mK. The only exception are the
measurements on the eleven junction linear array, in which the five highly resistive
junctions (with thick oxide barriers) on each side of the measured device are likely to render

the heat sinking much less effective.
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CHAPTER 4
EXPERIMENTAL RESULTS

This chapter describes our experimental results, We performed measurements on a
total of eleven samples: five single-junction samples, five two-junction linear arrays, and
one eleven-junction linear array. Sample parameters are given in Table 4.1. We have
divided the presentation of the results into four sections. We first describe, in Section 4.1,
the most basic results from I-V curve measuremsnts performed on the junctions at zero
magnetic field; here we present a number of striking obscrvations, such as a reentrant
critical current temperature dependence, and a significant resistive region (with R =R,) at /
< .. In Section 4.2 we discuss the effe :t of applying a magnetic field to the junctions: the
field dependence of I and R, the appe.rance of a novel regime in which features of the
Coulomb blockade and Josephson tunneling coexist, and the high field region in which
superconductivity is destroyed. Section 4.3 completes the presentation of results with a
discussion of the measurements performed oa the eleven-junction array. Section 4.4 ends
the chapter by summarizing the experimental results, setting the stage for the discussion to

be given in Chapters S and 6.

4.1 Basic Junction Characterization

This section is the core of this report. Here we discuss the most basic properties of
our small devices, and begin to differentiate them from conventional low capacitance

Josephson junctions.

4.1.1 Current-voltage characteristics
We begin the presentation of our experimental recults with a typical plot, shown in

Fig. 4.1, of the low temperature I-V characteristics for a junction with Ry = '40 k€2, The
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R,= 140 kQ
T =20 mK

V (mV) L

i | | 1 L

0 10 20
| I (nA)

Fig. 4.1: Low temperature I-V characteristics of the sample with Ry = 140 k€.
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characteristics are those of a high quality junction, with very sharp gap structure, and very
low leakage current. Values for the low temperature subgap leakage resistance Ry, are
given in Table 4.1,

While the sharp characteristics might remind us of a good conventional tunnel
junction, such as we described in Chapter 2, a closer look at the I-V curve already reveals
some unusua! phenomena. First of all, the value of the energy gap V; measured from the
I-V curve [Vg = 1.3 mV] appears too high for a junction with tin electrodes. Since the
measured T, of this device was about 3.75 K, a good value for Sn, we would expect from
Bardeen-Cooper-Schrieffer theory to have a gap value 2A/e = 1,764 kTple ~ 1.16 mV. At
the same time, the linear high voltage part of the I-V curve does not extrapolate back to the
origin. The vertical offset is about 100uV, as can be determined with good accuracy by
looking at the I-V curve on different scales. This vertical offset of the extrapolated line at
the origin matches approximately with the gap estimate discrepancy. It is also in good
agreement (x 20%) with the value of ¢/2C for this device.! Our interpretation is that we
are witnessing the effect of the Coulomb blackade, indicated schematically in Fig. 1.2 (c),
described in Chapters 1 and 2. The theme of this work is already apparent. While our
devices share many characteristics with conventional Josephson junctions, a number of
striking novel phenomena can be observed, which we attribute to the effect of a large
charging energy E,.

Fig. 4.2 is another plot of the I-V characteristics of the junction with Ry = 140 k€2,
also taken at T = 20 mK. The scale is more sensitive, and the critical currents and low
current resistance R, (notice the top plot on the expanded voltage scale) can be accurately
read off. This plot is similar to Fig. 1.3, an I-V curve of a junction with R, = 70 kQ,
already described in Chapter 1.  The estimated value of x=E/E; fo' this sample is about 6.

The features of this curve, such as a large hysteresis and a signifizant R,, are typical for the

§ The value of C is given by the intrinsic capacitance C;, estimated as described below, in Section 4.1.4,
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Fig. 42: [I-V curve of a sample with R, = 140 k{2 and estimated capacitance C = | fF,
taken at T = 20 mK and H = 0, showing definitions of /¢, Iy, Ry, and RL. The two plots
have the same horizontal scale but different vertical scales.
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low temperature behavior of the high resistance, low capacitance junctions reported in this

work., Similar I-V curves were also observed by Ono, er al. [1987].

4.1.2 The junction critical currents

The I-V curve in Fig. 4.2 displays two different measurable critical currents, /, and
Ip. I, is the maximum current that can be carried before the jump into the high voltage
regime. [,, the recapture critical current, is the current at which the system returns to the
low voltage state. The familiar "zero voltage state" is not found in this type of junction.
The behavior of the system is always observably dissipative, and can be characterized by
the resistances described below. Our definitions of critical currents are thus incdified from
the standard ones and are motivated by the need to describe our observations. Our
interpretation of these critical currents is developed in the remainder of ihis report. At
higher temperatres, the measured [-V curves were not found to be h; steretic. In this case
I, = I, and we define the measured critical current to be the V=0 extrapolation of the
increasing current branch of the I-V curve below the gap voltage.

In an ideal device, neglecting fluctuations, I, is given by the value /I, related to E;
by E;=#I;,/2e, where I, monotonically increases with decreasing temperature, as

described in Chapter 2. In Fig. 4.3, we display the temperature dependeice of /, and /, for

the junction with 140 kQ normal resistance. Note the remaikable temperature dependence

of I, first rising, then dropping by a factor of ten, then rising again by a similar factor as T
is reduced. This is very different from the monotonic rise of /;,(T). Moreover, the
measured value (/. = 0.36 nA) at low temperatures is much less than the theoretical
Io(T=0) =~ 7 nA. The inset in Fig. 4.3 is an enlargement of the low temperature region: the
temperature dependence of I, is very sharp down to the low millikelvin region, where it
appears to flatten off a bit. Another important observation is that the plotted /.. values are

averages over a very narrow distribution of switching currents measured on repeated
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sweeps, with width Al of only ~ 0.05 I, = 0.003 I.,. Note that I.=I, for T/T; > 0.5,
where the I-V curve is not hysteretic.

In Fig. 4.4, we display the temperature dependence of /. for a number of different
samples. The striking nonmonotonic behavior sets in as the sample resistance becomes of
the order of 10 k€2 Our lowest resistance junctions exhibit a monotonic temperature
dependence. Moreover, the measured critical current depression is not as marked as in the
high resistance samples, and can be accounted for quite well by conventional premature
switching arguments. It appears clear from Fig. 4.4 that the trend of the results presented
here is not dependent on the sample configuration. Some of the 7(T) curves plotted in Fig.
4.4 are from single junction samples, while others are the lowest I, measured in a two
junction sample: the general results from these two families of samples seem quite

mutually consistent.

4.1.3 The junction resistances

The behavior of our smallest devices always appears dissipative; to describe it , we
discuss three directly measurable resistance values. Using the sample in Fig. 4.2 as an
example, we have the normal state resistance Ry= 140 k€2, the low voltage resistance R,
(which ranges from 140 k£2 near the transition temperature 7, down to ~6 k€2as T—0),
and the subgap leakage resistance R;, (ranging from 140 k$2 at T up to 40 M$2 as T—0).
The latter is defined by the slope of the quasilinear part of the decrease in V from the gap
voltage, measured on an expanded current scale.

In Fig. 4.5, we display the temperature dependence of R,(T), for this sample with
R, =140 k2. R, is large at all temperatuces: as 7T is reduced below T, where R, = Ry, R,
drops, slowly at first, and then more sharply below 0.5 X, apparently flattening out at the
lowest temperatures. The insst shows the low temperature region. Fig. 4.6 is a plot of R,
vs. T for a number of different samples. While for low resistance samples R, soon

becomes immeasurably small below T, resembling the behavior of conventional devices,
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as R, becomes of the order of 10 k£2, the behavior changes, and R, is significant over the
whole temperature range.

Fig. 4.7 shows a plot of the measured R;, vs T for a typical sample. For our
samples, the leakage resistance is found to be well approximated by a shunt combination

of a thermaliy excited quasiparticle term ~R,e4AT and a residual conductance at 7=0.

R UT) =R1(0) + Ry le kT “.1)

In all measured samples, the oxide barriers were found to be of very high quality, with
R;(0) ~ 100 - 10,000 Ry. The measured low temperature leakage resistance R, (0) is
plotted in Fig. 4.8 as a function of R,. The trend is for R;(0) to be roughly proportional to
R,2, as discussed further in Chapter 5.

4.1.4 Junction "intrinsic" capacitance

An important part of our analysis is the estimation of the intrinsic capacitance of the
junction. The intrinsic capacitance C; cannot be directly extracted from I-V curve
measurements. It is detined in this context as the capacitance due only to the paiallcl plate
gecmetry of the superconducting electrodes separated by the oxide barrier through which the
tunneling occurs, and is thus given by C; = €,£,A/d. A is the junction area, obtained from
scanning electron microscope photographs. To complete the estimate, we use a dielectric
constant €= 6 typical? of SnCx barriers grown by glo » discharge, and a 3a1ricr thickness 4
=25+ 54, which is quite reasonable for our junctions, given their very low current density
(and thick barriers). Table 4.1 contains a list of sample capacitunce estimates. In general,
the intrinsic capacitancs is not necessarily an accurate estimate of the capacitance of a device,

since parasitic contributions may be important. In our case, it appears that C; agrees rather

§ SeeWang and Gailey [1978), and Danchi [1982).
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Fig. 4.8: Low temperature leakage resistanice vs. the .ormal resistance for all measured

junctions. The solid line has slope 2 and indicates the trend of proportionality between R,
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well” with capacitance estimates extracted from fits with our theoretical models. An exampie
is given ahove in Section 4.1.1; many more examples will follow. In the following
chapiers, unless we specify otherwise, we use C; as the estimate for the total capacitance of

the device.

4.2 Measuremerts in & Magnetic Field

Applying a magnetic field H to the sample reduces the Josephson coupling between
the electrodes by phase maodulation and by reducing the energy gap, both leading to a
smaller effective E;. By increasing H we can thus conveniently change the ratio x = E/Ey
in situ, which profoundly affects the behavior of the Josephson system, as described in
Chapter 2. The effects of this field modulation at low and moderate fields are described in
Sections 4.2.1 and 4.2.2. In Section 4.2.3, we describe a more extreme field regime, in
which 4 is apparently large enough to destroy the superconductivity in the tin junction
clectrodes.

4.2.1 Field dependence of I, and R,

A typical low temperature /, vs H curve is shown in Fig. 4.9. In almost all our
junctions, the magnetic field monotonically reduced I,. We ascribe this absence of the ideal
sin x/x dependence to the non-uniformity of the device. Since part of the junction area iy
on the edge of the electrode and part on top, the field onentation is different in different
parts of the device. Moreover, in a junction of this sort, fabricated using very long
oxidation times, we expect the distribution of the current through the barrier to be

nonun:form.

1 the agreement is usually within 20 or 30 %, which roughly corresponds to the error in estimating C; .
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Fig. 4.9: I vs. H for the sample with Ry= 140 k€2 The critical currents are normalized to
the value in zero magnetic field.
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As we show in Chapters 5 and 6, the relationship between I and £ in the large x
regime is not the simple I = (2eM) Ey, valid in the classical approximation at zero
temperature. A new expression is derived there which establishes the proportionality of
I4T=0)t0 Ef, forx >> I. A brief discussion is also given there of the likely dependence
of I. on temperature. In all cases /. appears dependent on the extent to which the phase
wavefunction is "bound" to the Josephson potential, and decreases as the height of the
potential barrier decreases. We thus assume that a monotonic relation exists between I,
and E; in all regimes of a Josephson junction, including the large x regime. Therefore, an
applied H can be used as a very powerful tool to change the barrier height of the Josephson
potential,*

The inset of Fig. 4.3 is an enlargement of the low temperature section of /;(T),
which appears to flaiten out below T ~ 50 mK. A similar behavior is observed in the low-
T measurements of R,, shown in the inset of Fig. 4.5. Three possible reasons for this
behavior come to mind: A significant extrinsic noise contribution could be adding a fixed
additional noise temperature. The sample heat sinking could be imperfect, causing a
fictitious sample temperature above the mixing chamber temperature measured by the
thermometers. Finally, quantum fluctuations could be dominating the response of the
sample at low temperatures.

Fig. 4.10 shows the low temperature critical current plotted as a function of 7, for
three mod=rate magnetic field values. Fig. 4.11 shows R, at low temperatures, for
different values of H. Apparently, the shape of the curves is field dependent, and the low
temperature flat section seems to disappear as the field is increased. This would exclude
the first explanation (at least in its simplest form), since a sharp temnerature response can

be obtained down to 20 mK, in the H = 1.3 kG plot. The second explanation also seems to

* A magnetic field has been used in a similar fashion by a number of groups including Devoret, Martinis,

and Clarke [1985], for MQT experiments, and Hu, Lobb, and Tinkham (19871, for chaos measurements.
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be inappropriate, for the following reasons: The power fed into the sample to measure R,
or I, is essentially constant.* As a result, imperfect sample heat sinking would also
apparently add an additional temperaturé to the sample, independent of H. This is
incompatible to the measurements performed at 1.3 kG.

The remeining explanation attributes the low temperature flattening of Ro and [ to
quantum fluctuations. The semiclassical underdamped limit 1esult is, roughly speaking,
for quantum fluctuations to contribute an effective temperature of T¢ross = Aw)y/(27kp),
which for this sample (see Table 4.1) would be about 150 mK, at H=0. Moreover, since
@) is proportional to Ej!/2, Tcress would decrease as the field is increased. Given that a
semiclassical result should not be trusted in the high x regime appropriate for this sample (x
~ 6), a quantitative comparison is inappropriate. However, the qualitative agreement
between semiclassical estimates and our observations seem to support the theory that the
relatively flat low T dependence of I and R, is due to quantum fluctuations. Even better
agreement is given by our very rough theory for /. (appropriate for large x) based on a
charge space model, given at the end of Chapter 6. In this theory, T ~ E y/kg ~150 mK (at
H=0) sets the scale for the temperature by which /.. is to be substantially reduced.

4.2.2 Coexistence of Josephson tunneling and Coulomb blockade

If we increase the magnetic field applied to the sample, we observe a very striking
new regime, Fig, 4.12 shows a sequence of I-V curves taken on the sample with 140 kQ
normal resistance, at different values of H. While at low fields the observed I-V curves are

only moderately resistive at / < /., as described in Section 4.1, beyond a critical field H, (~

# For the case of I, it has been empirically established by us that as the critical current decreases, R,

increases roughly proportionally to the square root of the current, keeping the power fed to the sample at [ =

1. approximately constant. At low currents, the I-V curve is linear, so that the measurement of R, is

independent of the power fed into the sample.
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Fig. 4.12: Series of I-V curves taken as a function of magnetic field at fixed temperatre,

for the sample with Ry = 140kQ
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0.16 T, in Fig. 4.12) the whole character of the I-V curve changes. The response now
: becomes highly resistive at low currents (with dynamic resistance of order R;), rising to a
platean at V =V, Thereafter, the voltage rises on a ramp with slopé R ~ 106 Q, from
which it sharply jumps to the gap voltage V, ata current we identify as /.. This
characteristic behavior is observed until H is equal to a second threshold field Hy; (about

0.32 T for the sample in Fig. 4.12) beyond which the critical current is reduced to zero,

.

and the "bump" on the I-V curve is no longer visible. Once the novel behavior sets in,

between H; and H,z, the value of V) is found to be insensitive to magnetic field and

PP —

temperature. This is shown, for example, in Fig. 4.13: the I-V curves, taken at the
intermediate field of 0.13 tesla as a function of temperature, undergo a transition similar to
that shown in Fig. 4.11 as a function of field. Apart from rounding, the value of Vj is the
same in all cases.

By reducing the Josephson coupling energy with magnetic field or temperature, we
can thus induce a striking transitinn in the shape of the I-V curve. The new curves are
highly resistive at low currents, qqalitatively reminiscent of the Coulomb blockade effect
mentioned in ihe introduction. Morcover, as shown in Fig. 4.14, to the precision with
which C; is known, the measured V), corresponds to ¢/2C; in all measured samples, where
C;is the intrinsic capacitance. In this novel regime, features typical of the Coulomb
blockade, such as the knee at V= 2/2C, coexi: with a sharp voltage jump at a current

reminiscent of the Josephson critical current /.
Fig. 4.15 shows a plot of the threshold fields H, and H;2 vs temperature for a
different sampie, with R, = 14.3 k€2 As the temperature is increased, £y decreases® , and
' the value of applied field required to reduce the Josephson encrgy to the threshold level

(H,), also decreases.

* At these fislds, the transition terapersture of the sample is as low as 1.4 K, so that between 50 mK and

1K the value of Ey changes ccnsiderably.

AR ek s O s

R R




101

100

Vi (V)
50 - F
0 ' '
0 0.1
2.
A(pm™)
B Fig. 4.14: Measured blockade voltage V;, as a function of junction area. The three
measured samples (from left to right) had Ry = 140, 35, and 14.5 kQ. The curves
commd to ¢/2C, calculated using an oxide barrier thickness of 30 A (top curve)
; and (bottom curve).
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4.2.3 Normal - insulator - normal junction regime

If the field is increased beyond the critical field of the tin electrodes, the device
becomes a normal - insulator - normal tunnel junction. The effect of charging energy can
then be studied without the added complications of superconductivity. We find however,
that the high magnetic fields necessary to destroy the superconductivity also appear to affect
the I-V curve of the device, adding new complications to the problem.

The field is applied to the junctions in a direction parallel to the plane of the

electrodes. In a thin superconducting film, the parallel critical field H, 1 is given by

H.A
Hy= 26 = 4.1

where d is the film thickness, and A is the penetration depth at zero field. For a thin film,
the parallel critical field can thus be considerably larger than H;. For our samples, we
found H, j between 0.3 and 0.7 tesla which, combined with a typical d of about 700 A,
gives us A in the neighborhood of 2000 A, assuming a tin bulk critical field H, = 305 G.
Fig.4.16 is a plot of the gap voltage V, as a function of magnetic field for a sample
with R, equal t0 8.3 kQ.¥ V, is at first strongly dependent on H, as appropriate for the
dependence of the superconducting energy gap, but bottoms out at higher fields to a
constant value. We attribute this to the effect of the Coulomb blockade; we interpret the
remnant gap on the I-V curve as corresponding to ¢/2C, with C corresponding to C;
(within 20 - 50%) for all our measured samples. An I-V curve of a device in this regime,

showing the remnant gap, was shown in Fig. 1.5,

¢ This data was taken by A. T. Johnson.
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Even though the magnitude of the remnant gap agrees with that expected from
charging effects, the shape of the I-V curve is a bit washed out, when compared to the [ o<
V2 ideal [Averin and Likharev, 1936] Coulomb blockade depcndence. Moreover, if the
magnetic field is ir.reased further the effect of the Coulomb blockade eventually becomes
even less marked, as shown in Fig. 4.i7. We believe that the Coulomb blockade is

rendered less effective by level broadening by spin alignment energies in the presence of

spin-orbit scattering processes.

To find the level broadening, we need to estimatet the dephasing time 7p due to the
spin-orbit scattering process. The dephasing time can be defined as the amount of time
clapsed for the phase to change by a significant amount, say ©t. The energy broadening AE
is then simply ~#ty-!. The energy difference between the two spin-flipped states is 2upH.
The average time between spin-flip events is the spin-orbit scattering time 75,. The amount
of phase deviation between spin-flips will then be (2ppH/%) t5,. The number of flips niade
for a length of time equal to the dephasing time is, on the average, T¢/Ts. If we assume
that the flip process is random, the total net phase deviation will be given by the phase
deviation per flip times the square root of the number of flips. Since in one dephasing

time, the net phase deviation accomplished is by definition &, we can write
[55))z
B o (4.2)

so that we can solve for 7y and estimate

k 20 4.3)

t M. Tinkham, privax¢ communication.
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Fig. 4.17: dV/dl vs. V, for different magnetic field values, for the sample with Ry = 140
kQ.
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If this energy width becomes comparable to the charging ensrgy, we would expect the
effect of the Coulomb blockade to be washed out. AtH ~2 T, the field scale on which the
dV/dI vs. V peak is flattening out in Fig. 4,17, ugH is 1.5 K. A typical value of 7y, for
Snis ~ 1012 sec [see Van Haesendonck, 1985]. Therefore, at 2 T, AE ~ 0.8 K, which

is indeed very close to the charging energy (E, ~ 0.9 K) for the sample with R, = 140 Q.

4.3 Measurement of Eleven-Junction Array

As we discuss further in the next chapter, one of our most puzzling observations is
that the capacitance of one of our junctions does not seem tr be strongly affected by the
large parasitic capacitance of the leads. To investigate the effect of the leads on the
behavior of our junctions, we fabricated = sample consisting of eleven junctions in series.
If the leads strongly affect the dynamics of our devices, then the behavior of the smallest
junction (fabricated in the center of the array), should be qualitatively different from the
behavior of our single and double junction samples, described above.

A typical low temperatue I-V curve of the eleven junction array is shown in Fig.
4.18, taken at T = 50 mK., The return branch of the I-V curve shows eleven small
plateaus, the evidence of eleven gap voltage jumps. On the other branch, all junctions
appear to switch simultaneously: apparently the switching of the junction with the smallest
I, triggers switching in all the other junctions as well. The behavior of the array is similar
to that of single and double junction samples: The critical current is considerably reduced
below the Ambegaokar Baratoff value /,, atlow temperature, and the I-V curve is resistive
at all currents. A lot of effort was spent searching for a region of negative resistance at
low currents, which has been predicted by various authors [se~, for example, Likharev and

Zorin, 1985]. As in the single and double junction samples, no such region was detected.
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Fig. 4.18: Low temperature I-V characteristic of the eleven-junction array.
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Fig. 4.19: I, vs. T for the eleven-junction array.
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Fig. 4.19 is a plot of the critical current of the array vs. temperature, the former
defined as the first (smallest) critical current on the I-V curve. We interpret the measured
I as arising from the response of the lowest /. junction in the array. The qualitative
features of Fig. 4.19 are very similar to those typical of a single junction sample, shown in
Fig. 4.3. The only qualitative difference is that the flat region at low temperature appears
considerably broader, extending as far as 100 mK.

To investigate the possible reason of this difference we can apply a field (o the
sample, much in the same fashion as we did in Section 4.2.1. The resuits are plotted in
Fig. 4.20. In this case, the application of a field does not affect the width of the flat region,
as is shown especially well in Fig. 4.20(b). Using the same arguments outlined in Section
4.2.1 we believe, in this case, that the flat region is not due to quantum fluctuations, since
reducing the Josephson coupling energy by a magnetic field does not affect its width.
Moreover, we believe that it is not due to extrinsic noise, since the shielding is the same as
in the single junction samples. The heat sinking of the smallest junction in the array, on the
other hand, is much worse than in .thc single junction samples, since its leads include five

other highly resistive tunnel junctions.t Thus, our interpretation is that this time we are

witnessing the effect of heating on the sample.

T We discussed in Chapter 3 that we believe that the leads uppear to be the most effective heat sinking

mechanism for the junctions.
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Fig. 4.20: Low temperature /. vs. T for the eleven-junction array, for different
magnetic ficld values. (a) and (b) share the horizontal scale.
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4.4 Summary of Experimental Results

In this chapter we have outlined a number of initially puzzling experimental results.
For some of the results, a brief interpretation has already been provided. The next two

chapters are devoted to the more complete interpretation of the major results. These are:

1. The existence and magnitude of Ry(T).

2. The reentrant temperature dependence of I, and /.

3. The reduction of I, by an order of magnitude relative to /,, while
maintaining a narrow switching distribution,

4. The coexistence, at intermediate fields, of features common to the

Coulomb blockade and Josephson tunneling.

In Chapter 5, we attemnpt to stretch existing classical models to analyze our results. In
Chapter 6, we examine the consequences of a more fully quantum-mechanical picture.
Whereas the classical approach proves most successful in the higher temperature regimes,

the quantum approach is more appropriate at low temperatures.
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CHAPTER §
DISCUSSION: THE CLASSICAL REGIME

S PR

t - In the next two chapters, ws describe an interpretation of the salient features of our
. measurements. We begin in this chapter by discussing in Section 5.1 the basic
assumptions underlying our presentation. In Section 5.2, we go on to discuss the failure
; of the most standard models, which successfully describe conventional high capacitance
| Josephson devices. We then present the first part of our interpretation in Section 5.3,
which is an extension of the basic classical RCSJ model described in Chapter 2. The range
of validity of a classical approach is limited for our samples, since the significant charging
energy of the devices is expected to cause large quantum fluctuations in the phase, as
discussed in Ch-nter 2, On the other hand, the semiclassical approach provides a very
useful heuristic siart for our interpretation, and appears to give semi-quantitative agreement
above 1 K for our lower resistance samples, in which quantum fluctuations are not
expected to be as large. The second part of our interpretation is given in Chapter 6, in
which we discuss a quantum mechanical approach, used in explaining our lower

temperature results.
§.1. Definition of the Basic Model

This first section is a discussion of the assumptions we make in our interpretation.

It applies equally well o the classical treatment, presented in the remainder of this chapter,
and to the quantum treatment of Chapter 6.

Our basic model is the usual resistively and capacitively shunted Josephson junction

-
&
£
:

(RCSJ) model discussed in Chapter 2, and shown schematicaily in Fig. 5.1. A complete

description of the model involves characterizations of the Josephson coupling channel by a
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Fig. 5.1: Schematic of the equivalent junction circuit used in the RCSJ model.
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definition of E;, of the capacitive channel by the definition of C, and of the dissipative
channel by the definition of R(V).

We assume that E; is given by E;= #l,,/2e, where I, is given by the Ambegaokar-
Baratoff relation [Ambegaokar and Baratoff, 19€2]:

A A
I,= z tanh( )
2¢R, 2k T .1

This formula has been found to give excellent agreement with critical current measurements
on large low resistance (Ry < 5£2) Sn-SnOx-S+ junctions, where thermal and quantum
fluctuation effects are expected to be negligible [Danchi, 1982]. These samples were
fabricated by our research group with the same equipment and techniques as those used in
the fabrication of the small high-resistance samples which are the subject of this study.

We also assume that C can be approximated by the intrinsic capacitance C; and that
the relevant resistance R(V) is given by R, for /V/ < 24/e, and by R, otherwise. While it
may seem surprising that the extensive distributed capacitance of the leads does not
overwhelm the small intrinsic capacitance, there is significant experimental justification for
our assumption. For example, van Bentum et al.[1987] and Hartmann et al.[1988] recently
performed Coulomb blockade measurements in a scanning tunneling microscope (STM)
with normal electrodes: their measured capacitance values in the neighborhood of 108 F
were unaffected by the very large distributed capacitance of the STM apparatus.

To test the effect of lead impedance on the dynamics of our devices, we have
fabricated junctions in single-, double-, and eleven-junction configurations. As we
discussed in Chapter 4, the behavior of the smallest junction in each of the measured
configurations appeared mostly unaffected (except for heating effects) by the presence of
companion junctions in the leads, whose capacitance and inductance would gmssly affect

the lead impedance. Thus it appears that the dynamics of our junctions depend mainly on

C
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their intrinsic impedance. While this is in apparent contrast with the observations of
Martinis et al. [1985] on much larger junctions, we believe that the different behavior may
be-due to the importance of single electron effects in our devices. As the energy change
due to the tunneling of a single electron becomes dominant, the problem will become more
microscopic in nature, and the timescale fast. The timescale for the dynamics of a
conventional semiclassical Josephson junction [of the kind used by Martinis ef al., 1985]
is given by the Josephson plasma frequency, typically of order 10° - 10/! Hz. In the
opposite regime, when the charging energy is completely dominant [as is the case in the
observations of van Bentum, et al., 1987], the characteristic frequency is thought to be the
inverse of the electron tunneling time, typically of order 1015 Hz. The faster the time scale
the higher the impedance of the inductive leads. These arguments do not show that the
devices will be completely independent of the leads; we believe, however, that the parasitic
contributions are small, and that the intrinsic capacitance C;, in our system, is a reasonable
estimate of the total effective capacitance of the device. This position will be further
justified a posteriori by comparing the predictions of this model with our data.

Finally, since we believe that the low temperature behavior of our devices is not
dominated by dissipation in the leads, it is important to consider the nature of the intrinsic
dissipation, R(V). Since dissipation in an ideal Josephson device is determined by the
tunneling of quasiparticles, the discrete nature of the charge transfer in the tunneling
process will become important. We consider this especially in the last sections of Chapter
6, when we analyze the coexistence of the Coulomb blockade with some features of
Josephson tunneling. ‘One interesting aspect of our measurements of R;, the low voltage
part of R(V), is that its temperature dependence follows quasiparticle thermal activation at
higher temperatures, but flattens off at low-T, as described by (4.1). We believe that the
existence of a finite R;, as T— 0 is not due to metallic whiskers partially shorting out the
barrier, since RI“(O) is very large, typically of order 103 £2; since the whisker's length
would be equal to the barrier thickness (~25 4), a resistance of 108 2 would require a
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resistivity much larger than I {2-cm, even for a diameter as small as one atomic spacing.
This appears unlikely, and we believe that this temperature independent dissipation term
: may instead be due to a tunneling mechanism.

The apparent proportionality of the residual leakage resistance to R,2 (see Fig, 4.8),
suggests that a possible source of low T dissipation may reside in the effect of Andreev
reflections on the tunneling I-V response. This was analyzed by Blonder, Tinkham, and

Klapwijk [BTK, 1982], who showed that the Andreev channel should have a probability

going as the square of the probability of charge transfer in the normal channel. If we

o T Y

extrapolate the square law relationship back, we find that Ry~ Ry (0) for a resistance of
order 1002, In the BTK theory, the point at which the normal and leakage resistance are
approximately equal corresponds to a device of "barrier strength" Z [see BTK, 1982] of
order one: i.e. a device whose barrier is very weak, and whose I-V characteristic begins to
resemble a microbridge rather than a tunnel junction. A resistance of 100 2 appears high
for a device with microbridge characteristics. However, this apparent inconsistency can be
resolved if we remember that there is evidence (from the magnetic field data, for example)
that the oxide barrier may be quite nonuniform. Since the Andreev term is proportional to
the square of the tunneling probability, a small fraction of the junction with a thinner barrier

may dominate in the leakage term.

5.2 Failure of Standard Approaches

pa S

As we described in Sections 2.6.2 and 2.6.3, if AT or E, are significant in
comparison with E}, I(T) is no longer expected to closely follow I.o(T). Itis now well

established, both experimentally and theoretically, that thermally activated "escape” from

RO PF QR A LTSI AR TR L,

1 See, for example, Fulton and Dunkelberger [1974], Naor, Tesche, and Ketchen [1982], Danchi et al.

[1984], Silvestrini et al., [1988), and Silvestrini, Liengme, and Gray [1988], for experimental treatments,
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the minimum of the tilted cosine potential causes "premature switching” to the finite voltage
regime. An expression for the thermal escape rate was given by (2.57). For an order of
magnitude estimate, ignoring the effect of damping on the prefactor and the current

dependence of the attempt frequency, we can write

o, -2
Y P Ell
T ~2x¢ (5.2)

The plasma frequency is given by @y, = (8EcE;)!/2/#, and is typically of order 100 Hz.
As a result, in experiments with current sweep times of order 1 second, escape will occur
as soon as AU(I)/kT ~In vp ~20 >> 1. Taking account of the fact that AU(I) = 2Ej(I -
IllcoP'2 to a good approximation, one expects switching to occur when this AU(I) ~ 20
kT. A better approximation for the average I, expected from this model was given in
(2.58), and depended logarithmically on the current sweep rate.

Since the escape is stochastic, there will be a distribution of switching currents,

whose width was given in Chapter 2 to be:

:2?( I, - lc)

S
Inf —5—
T

5.3)
In our samples, ;o ~0.11,, and the logarithm is of order 20, so that {5.3) would give &l =
0.03 Io. This result is inconsistent by an order of magnitude with the new data, in which

& = 0.003 I5. The switching distribution is simply too narrow to be compatible with an

and Kramers [1940]. Ambegaokar and Halperin [1969], P.A. Lee [1971], J. Kurkijiirvi [1972], Buittiker,
Harris and Landauer [19831, and Barone, Cristiano, and Silvestrini [1985], for theoretical treatments.
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explanation of the depression of the observed /; so far below /¢, by premature switching,
Put another way, for I so far below I, the cosine potential is barely tilted, and the height
of the barrier is almost independent of current. Hence a small change in current could
hardly account for a sudden onset of switching out of the zero-voltage staie. Moreover,
this picture of stochastic escape is qualitatively incompatible with the finite voltage below
I, which implies a steady-state phase evolution, rather than metastable locking in position
in a single well until the escape.

As one goes down in temperature, eventually this thermally activated escape
becomes less likely than escape by macroscopic quantum tunneling (MQT) through the
barrier. This mechanism already takes us beyond the classical regime, but in the junctions
studied previously,® this escape probability was sufficiently low that one could still treat
the phase as a rather localized semiclassical quantity, which occasionally made a
probabilistic transition through the barrier into a free-running finite voltage state. In this

regime, it was shown that there is a crossover temperature given roughly by
kBT cyoss = Rap/2% = (8EE ) 227 (5.4)

as we discussed in Chapter 2. Below this temperature, the same qualitative probabilistic
switching should occur as in the thermally activated regime, except that the constant Ty,
replaces the actual temperature. Thus, the same inconsistency between a narrow switching
distribution and a huge depression of /,; below /;, exis's in this regime as in the thermally

activated one, and a more appropriate explanation must be found.

* Ses den Boer and de Bruyin Ouboter [1980,] Prance et al. {1981,] Voss and Webb [1981,] Jackel et al.
{1981,] Washburn et al. [1985,] Schwartz er al. [1985,] Martinis, Devoret, and Clarke [1985,), Devoret,
Martinis, and Clarke [1985.)
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5.3 Extension of Standard Models

In the previous section, we have argued that the usual dynamics describing
Josephson junction behavior do not apply to our observations. The common situation of a
constant ¢ value at /<. followed by a probabilistic switching into the finite voltage
"running" state is simply inconsistent with our measurements. Since the observed I-V
curves are resistive, even at the lowest currents, it seems very plausible that the dynamics
of the system aie characterized by very frequent phase-slips, which would give rise to
dissipation, and thus to R,. Mechanisms of these frequent phase slips would be thermal
activation (since for our devices typical heights of the Josephson potential are of order /X),
and quantum tunneling (since E, is of order Ej). However, since a current bias tilts the
Josephson potential, the system would possibly exhibit no critical current at all, since once
the first phase-slip occurs, the subsequent ones become easier. To account for the
observations, therefore, we need to consider the effect of damping, as a retrapping
mechanism, |

Qualitatively, the dynamics of our devices may be described as follows: At/l</,
the phase frequently escapes from its potential well, The energy it acquires in a 2r phase-
slip, however, is 1ost through damping, and the phase retraps in a subsequent well. This
process goes on until /=1, at which point one of two things happens. Either the potential
tilt becomes eniough for the system to acquire more energy than it loses from damping, or
some intrinsic limit to the maximum Josephson current is exceeded. We believe the first
situation to be valid at higher temperatures, in what we call the "semiclassical regime", and

the second situation to be valid at low temperatures, in what we call the "quantum regime".
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5.3.1 The Role of Damping in the Semiclassical Case

It is well known that so long as a junction is underdamped, the amount of damping
affects the escape rate only through a change in the prefactor in (5.2). Since this factur only
enters logarithmically in the depression of /., this change is usually unimportant.
However, the amount of damping is the crucial factor in determining the retrapping current
Iy. Because /; and /, coincide above ~2/3 T in the new data, where they are both strongly
reentrant, it is appropriate to review the physics of what is going on with I, as well as /..

In Chapter 2, we discussed that in the simple RCSJ model, the retrapping current is
given by the following expression, if we ignore thermal fluctuations:

4 Ieo ’ co(T)
B. R(T)

Here the temperature dependence of I, is given by (5.1), which monotonically increases as

(5.5)

T is decreased. Accordingly, if (5.5) is to describe the temperature dependence of / in this
reentrant regime below 0.9 T, it must result from the temperature dependence of R(T).
In fact, if we substitute the leakage resistance approximated by (4.8), an approach justified
in Section 2.6.1, we find excellent agreement with the shape of the temperature
dependence, as shown in Fig. 5.2. [The magnitude is too small by a factor ~7, but we
shall see that that discrepancy can be accounted for largely by fluctuation effects which are
not included in the Stewart-McCumber analysis which gives rise to (5.5).]

5.3.2 The Effect of Thermal Fluctuations on the Critical Currents
It is well known, as noted above, that thermal fluctuations have the effect of
reducing the measured /, by inducing premature switching out of the zero-voltage state. It

is less well known that thermal fluctuations have the oﬁposite effect on I,, i.e., they

* increase it. This point has been made by various authors, recently by Cristiano and
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Fig. 5.2: () /:and I, vs. T for the sample with Ry= 70 k2. (b) Left: predicted low
temperature /., due to Zener tunneling and thermal activation, as described in Chapter 6.
Right: predicted /(T), described in the text.
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Silvestrini [CS, 1986; 1987] who also presented the results of numerical calculations.
Since this result seems counter-intuitive to many, it is worthwhile to give a simple physical
argument * which establishes the correctness of the sign of the effect.

Consider Fig. 5.3 (a), which depicts the tilted washboard potential at the current
corresponding to /, in the absence of fluctuations. On the vertical axis, we plot the total
energy, kinetic plus potential, so that without dissipation the representative point follows a
horizontal trajectory. At this current value, the representative point, starting at the top of
one barrier follows a trajectory which reaches the corresponding point at the next
maximum. Now consider the effect of fluctuations which raise or lower the energy
discontinuously at some point on this trajectory. If the initial fluctuation is downward, the
trajectory continues dowaward because energy is dissipated at the rate -V2/R and is not
recovered from the current drive since the trajectory is confined to a single minimum. On
the other hand, if the initial fluctuation is upward in energy, this increases 1/2 CV2 and
hence V2/R, so that the trajectory falls more steeply, eventually returning to the marginal
trajectory on which it started,which it follows stably until the next fluctuation occurs. Since
upward fluctuations recover while downward ones cause retrapping, it is clear that the
fluctuations tend to make the system more stable against runaway. Accordingly, the
marginal current value (tilt) giving retrapping is greater in the presence of fluctuations than
without them, so 7, is increased.

As shown schematically in Fig. 5.3 (b), then, the effect of fluctuations is to induce
a convergence of I, and I, toward a common intermediate value, eliminating hysteresis.
Another etfect of the fluctuations is to cause both /, and /. to acquire a probabilistic
switching character, as has been mentioned earlier. As the fluctuations increase further in
strength beyond that causing the coalescence of /. and /,, the switching back and forth in

the vicinity of this critical current value becomes so rapid compared to experimental time

* M. Tinkham, private communication.
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Fig. 5.3: (a) Schematic of the effect of fluctuations on the retrafping process. (b) Sketch
of the effect of thermal fluctuations ir: reducing and eventually eliminating the hysteresis in
an underdamped Josephson junction,

B . At

N R 2 eyt i

N L o i 1A



e

- T B e D

125

scales that the measured voltage averages to give a smooth continuous resistive transition.
The value of this coalesced I = I, can be determined by simulation methods, but one can
also reason that it will be determined by the physics of I, rather than the physics of ,, since
when fluctuations are this prominent, the system is activated out of its mewstable minima
so quickly that "premature” switching is taking place continuously. The crucial question is

at what current the damping assisted by fluctuations leads to the reirapped state being the

more dynamically stable one, and this is the consideration determining /,. We conclude

that, in the non-hysteretic regime where fluctuations are dominant, the measured critical
current I, should be interpreted as I, as enhanced above the value given by (5.5) by the
presence of fluctuations. This theoretical conclusion is confirmed by the experimental
observation (see Fig. 5.2) that the temperature dependence trend set by the coalesced I,=/,
in the non-hysteretic region continues as that of /, when the junction becomes hysteretic.
With the principle established that I, (including the major enhancement by
fluctuations) determines not only /, at all temperatures but also I, above the temperature at
which hysteresis disappears, we now must estimate how large is the enhancement of (5.5)
by fluctuations. The results of CS are restricted to values of y=2Ej/kT = 5 - 50, and
attempt numbers L ~ 109 - 105, whereas in our samples 7 is typically less than I and the
attempt numbers are of order 1010, Still, we can use their results by noting that they show
that the enhancement of /, varies approximately lin::arly with the logarithms of L and 7.
Using this obscrvation, if one extrapolates their results to ;<! and L ~1010, one estimates
an enhancement factor of roughly 5 or greater; for comparison, the largest enhancement for
the parameters considered by CS is about 3, so this extrapoletion is not terribly extensive.
It is reassuring, nonetheless, that our direct simulations also give enhancements by similar
factors. Since it appears that the enhancement factor should not depend strongly on ¥ so
long as it is less than or of order unity, nor on L so long as it is within an order of
magnitude of 1010, we conclude that the temperature dependence of the observed I should

be very similar to that of the unfluctuated result (5.5), but that the magnitude should be
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larger by a factor of order 5 because of the fluctuations. Considering the uncertair ties in
parameter values (especislly C) and in this extrapolation. this estimate is quite consistent
with the observation that the measured /, is roughly 6-7 times the value given by (5.5), and
has essentially the same temperature dependence.

5.3.3 Classical estimates of R,

Another interesting feature of our observations is the presence of a resistive state at
currents below the measured I,. At higher temperatures, the I-V curve is not hysteretic,
and the presence of a dissipative branch is not surprising. We have seen that damping
appears to play a key role in the determination of the critical current in this regime. We
believe that the observation of a nonzero R, is also primarily due to damping.

For almost all our junctions, at temperatures above 1 K, thermal fluctuations are
very large compared to the Josephson coupling energy. The escape out of the Josephson
potential well is thus very rapid, with rates of the order of the Josephson plasma frequency
o). The "phase point” is thus constantly out of the Josephson potential well, and gradually
slips downhill. At currents less than the retrapping current I,, however, the escape of the
phase point over many wells is not energetically favorable: it loses energy through
dissipation faster than it gains energy from the motion downhill. The phase point will thus
retrap in a subsequent well.

It would be desirable to corapare the observed values of R, with estimates extracted
from theoretical calculations of the rates of escape out of the Josephson potential.
Unfortunately standard theoretical estimates for the escape rate out of a metastable potential
break down when kpT becomes greater than the barrier height. Morcover, we cannot
interpret our low temperature data in this fashion, since below I K we expect quantum
tunneling to be very important. Our comparison with accepted thermally activated escape

theories is thus limited; we can only expect quantitative agreement from our lowest

 resistance sample (R,=55042, E;~45K), for which the Josephson coupling energy is
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reasonably large compared to kgT even at relatively high temperamfes. For this sample, at
temperatures above 2K, the contribution of quantum tunneling should be minor, but the
ratio of E; to kT is still large.

As we point out above, the existence of substantial resistive voltage even for I << I,
indicates that the phase variable is steadily evolving in time, at an average rate dé/dr =
2¢VHi. In the presence of a current, the successive minima drop in energy by hl/2e, and
the barrier heights for escape in the uphill and downhill directions are shifted by £h!//4e
with respect to the zero-current case. As a result the escape probability is greater in the
downhill direction than in the uphill one, and there is a net rate of downhill tunneling
proportional to I (for small I). Hence there is a voltage V e d¢/dt o< I, which can be
described by the resistance R, = V/I. We assume that the system will lose energy by
dissipation and retrap in the adjacent well, making the phase slip per activation event
approximately equal to 2x at low current.

We now need to cslculate the difference between uphill and downhill escape rates.
We define I't to be the escaps rate to the right (downhill) and I™ to be the value of the

escape rate to the left. Expanding around /=0 the following estimnate is obtained.

_#_14¢
Ro=geTa ™

A Lli2m)(rt-1) 56
To estiwate the escape rates we assume that I't and I' are independent: i.e. we assume
that I'* is only dependent on the barrier height to the right, and not affected by the fact that
escape to the left is also possible. I'and I can then be estimated by using results from
thermally activated escape theories. They are functions of the uphill and downhill barrier
heights, respectively, and the resistance and capacitance of the device. For the parameters

of our lowest resistance junction (R,= 550 ), the differences in the estimates for the

Kramers [1940], Biittiker, Harris and Landauer[1983], and Barone, Cristiano, and
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Silvestrini[1985] theories are smzll. We use the last approach for our actual estimates since
it is valid closer to the breakdown at Ej~kgT. The escape rate is thus given by [Barone,

Cristiano, angd Silvestrini, 1985]

n=1" (5.7)

where U, is the barrier height (ir. the uphill or downhill direction) and E,, is the initial
encrgy of the representative phase point, boti normalized to Ej, while y= 2Ej/kgT. E,is
not a well known parameter for the system: however, it is reasonable [Barone, Cristiano,
and Silvestrini, 1985}, in the large limit, to assume that E,~ 2/%, which ccrresponds to the
particle having initial energy equal to kgT. For large ¥, therefore, E, is small, and (5.7) is
easily applied.

Using (5.6) and (5.7), we ¢an now estimate the low current resistance R, for our
lowest resistance (largest ) sample. The agreement is excellent, as shown in the Arrhenius
plot of Fig, 5.4, using the estimated intrinsic capacitance C;, the leakage resistance given
by (4.8), and no adjustable parameters. We can use the same approach to estimate R, for
intermediate resistance samples (having lower 7). However, (5.7) becomes much more
sensitive to E,, and the approach only works as an order of magnitude estimate.

_For our higher resistance samples, standard models of thermally activated escape
no longer apply. For the sample with Ry= 140k€2, for example, the Josephson -cnupling
energy Ey onl); corresponds to 0.3K. Except at the lowest temperatures, the representative
phase point is constantly thermally activated out of the potential well. The motion of the
phase point, therefore, might resemble more a diffusive random walk, than a sequence of
well-defined activated jumps from well to well. Unfortunately, to our knowledge, this
regime has not yet received extensive theoretical scrutiny, in the underdamped case. To

obtain a simple phenomenological prediction, we assume that the rate of motion downhill is
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an 5.4: R, vs. T for the sample with R,.- 550 2. The line is a theoretical fit with no
adjustable parameters using theory outlined in the text.
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proportional to the amount of time the system spends above the barrier. The
proportionality constant must reduce to R, as T— T,. We write

=~ - - AU 1 kT
Ry ~R +(Ry- R e 5.8)

where Rgm is the contribution of quantum tunneling, estimated below in section VIII. The

activation energy AU, given by the barrier height ~ 2E; in a classical treatment, might be :
‘ reduced in a more complete quantum treatment, since part of the Josephson potential well is

below the lowest quantum state. This rough phenomenological estimate (5.8) is good

enough to give an order of magnitude estimate, and an idea of the general trend of the data,

as shown in Fig. 5.5, where Ry, was chosen to fit the limit as T—0. A more complete

treatment will be required to obtain quantitative agreement.
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Fig. 5.5: Comparison of experimental and model dependences of R, vs. T for the sample
with R,= 140 k£2. The horizontal scale is expanded in (b).

BN e R BB -



132

5.4 Summary and First Conclusions

; From the above, we conclude that the semiclassical model can account for the entire
I(T) and for the I.(T) (and R,, qualitatively) in the ﬁon-hysteretic temperature range,
provided:

(a) the effective capacitance in the RCSJ model has a value ~ 1-2 fF, as estimated

L L b s e e o e At

from the geometry with little allowance for capacitance contributed by the leads.

(b) The temperature-dependent damping is governed (at least in the frequency range
relevant to /;) by the leakage resistance (4.8), which agrees with the measured
value of Rp;

(c) Thermal fluctuation effects enhance the I, given by (5.5) by a factor of order 5,

as expected from simulations.

However, the semiclassical model can not account for the low temperature data, where I, >

EJ. In the next chapter, we will explore this possibility.

Iy, with a measurable resistive voltage at all current levels, including I < /.. The possibility
that quantum effects provide the explanation is suggested by the fact that for C ~ I fF, as

found above, the Coulomb charging energy E, = €2/2C ~ | K, which is comparable with
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CHAPTER 6
DISCUSSION: THE QUANTUM REGIME

In the preceding chapter we have given a phenomenological classical treatment of
the behavior of a Josephson junction when Ej is of order kgT. In our devices, however,

the estimated charging energy is also of order the Josephson coupling energy, which

should cause very large quantum phase uncertainties, as discussed in Chapter 2. As the

ratio of charging to Josephson energy becomes of order one , the width of the ground state
wavefunction in ¢ space approaches the width of the Josephson potential well, and the
tunneling rate from well to well becomes very rapid, of order the plasma frequency ap,
where #a), = (8EEj)!2.  Therefore, to understand our measurements, especially as
thermal fluctuations freeze out for T < /KX, it is necessary to extend our treatment to inv.” ude
the quantum mechanical nature of the phase.

We begin this chapter by using a model in ¢- space to obtain some estimates for R,
and I in Sections 6.1 and 6.2. Sectiors 6.3 and 6.4 analyze the consequences of a simple

Q-space trearment which should be more appropriate in the large E/E; limit.

5.1  Interpretation of the Resistance R,

Our treatment of this problem in the quantum regime is quite similar to that given in
Chapter 5, for the classical case. For the lower voltage branch of the I-V curve, at/ < /.,
the expectation value of the phase tunnels from well o well, evolving in time at a rate d¢vds
= 2¢V/h. To develop an interpretation of this voltage in the ¢-space framework, we assume
that the degree of delocalization is sufficiently small that we can reasonably represent y(9,¢)
by a function localized in one well, which occasionally tunnels ir.:o an adjacent well. (For
the present, we assume T = 0, 5o there are no thermally activated hops.) In the presence of

a current, the tunneling probability is greater in the downhill direction than in the uphill
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one, and there is a net rate of downhill tunneling proportional to / (for small /). Hence there
is a voltage V o d@vdt = I, which can be described by the resistance R, = V/I. While
perhaps qualitatively appropriate for all samples, this picture can only be expected to be
quantitatively correct for the samples with x < I (x & E,/Ey), so that the phase uacertainty is
still not large compared to 2. The sample with R,= i4.8 k€2, and x~0.25 thus appears to
be a good example for testing the accuracy of this model.

We implicitly assume that there is sufficient damping present that, after each
tunneling event, the system equilibrates into the lowest quantum state in the well into which
it has just tunneled, before tunneling agzin. If the system did not lose energy in this way, it
would run away, since in successive wells (in the downhill direction) it would experience
lower and lower barriers, and unnel ever more readily, until it was above the barrier
entirely. Of course damping also reduces the tunneling rate, as we discussed in Chapter 2,
but a calculation of the tunneling rate in the absence of damping provides a useful starting
point, giving an upper bound on the resistance R,. We also ignore any effect of phase
coherent reflections from subsequent wells of the Josephson potential. This is expected to
be a significant source of error, especially for values of x > I, in which case y(9) is
expected to be significantly spread out over more than ont potential well.

W= assume that I'*, the tunneling rate to the right (downhill) and I, the tunneling

rate to the left are independent. We obtain, as in the classical case,

__f 140 £ 1
Ro= 5ot g~ger(20)(I"=T) 6.1)

To obtain a first estimate of R, we use the WKB approximation result for I. The WKB

tunneling rate was given in Chapter 2
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Fig. 6.1: Ry vs.x = EJ/E;. Comparison of experimental values, values obtained using the
WKB approximation, and values obtained numerically. The dashed horizontai value

indicates the value of the quantum resistance Rg = h.4e2,
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where v = (Vy#i),)!12, V, is the barrier height, equal to 2E; + hl/de, ), is the classical
resonant frequency of the well, i, =#ay, = (8E,E)!<, at I << I¢o. xand s are numerical
constants, which are functions of the shape of the potential and of the damping. For the
cubic potential approximation, and assuming low damping x = 52.1, s = 7.2. Combining
(6.1) and (6.2), we obtain an analytical estimate for R,, which we compare with the

measured low temperature values in Fig. 6.1. While the value of R,, for the sample with
‘ Rp= 14.8 k€2 (x =~ 0.25) is in good agreement with the estimate, the samples with large x
exhibit values of R, considerably lower than the estimate.

In the large E. limit, it is seems apparent from Fig. 6.1 that cheracteristic low-T
values of R, approach a value of order Rg = h/4e2 ~6.1 k€2 We do not believe this to be
fortuitous. If we take a maximum reasonable energy level width equal to the barrier height
OE ~ 2E; + hli4e, the net escape rate to the right becomes I'* - I' = (2x)l/2e. Using (6.3),
we have R, = (W/2el)(2x)1/2e) = (2x) h/4e2, which is in reasonably good agreement with
the trend in Fig. 6.1, _

One large source of discrepancy in some of our comparisons is the inaccuracy of
WKB tunneling estimates for values of x > 1. In this range, the width of w(¢) becomes
comparable to the well spacing, and only one energy level is found in the well, Thus the
semiclassical WKB approximation is no longer appropriate. To obtain a better estimate for
the tunneling rate in the regime wiwn x near /, we have carried out a numerical calculation.
We isolare a single well of the Josephsor potsntial by considering the potential &/, shown
in Fig. 6.2. For any energy, one can integrate the Schrddinger equation to find the
resulting wavefunction yg(9). We consider an initial condition y(t=0) =y, chusen 10 be
essentially localized in the potential well; , is defined by us as the ground state of we
potential Ug shown in Fig. 6.2. We then expand , using the yz(¢) wavefunctions, and

compute the time evolution y(t) Finally, we can extract the probability that the system has

P

PR




Mﬂmwm‘w i e e
%

137

‘ Ua { 1, <~
= 4 -cosd -R<$<2r
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Fig. 6.2: The two different potentials used in the numerical calculations of R,. (a)
Metastable potential, used to calculate yg. (b) Stable potential, used to calculate .
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not tunneled, which we call P(z), from the projection of y(t) on ,; P(1) < It win) 12,
We define a normalized spectral weight

Jvo v 2
f(E)=——| °AEI 63)

where A is the normalization constant given by A = /y,* W, /yg* ¥g. We then have

2
P(t)=|dEr( E e "! (6.4)

Insofar as the shape of f{E) is approximately Lorentzian, with ful width at half maximum
of &, then we may approximate P(?) by a function of the form =°1/%, The escape rate 71 is

then given by

Al
[
&

(6.5)

Fig. 6 3 shows a comparison of escape rates calculated with the WKB formula
(6.2) and by the numerical technique discussed above. We see that, while for values of x
<< I the results of the two calculation methods converge, for x > 0.5 there is considerable
discrepancy, as expected; the tunncling rate calculated by the wavefunction expansion
method outlined above is significantly lower. In particular, note that the nuiumerical estimate
yields 8E < Ej, which is self-consistent, whereas the WKB escape rates give oE > Ej.
which is conceptually inconsistent with the escape out of a well of depth Ej. This
systematic difference in lifetime is also in the right direction to improve the agreement with

the observed values of R,,.
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Fig. 6.3: Comparisbn of WKB and numerical estimates for the es:ape rate, expressed as a

normalized energy width, and therefore only dependent on x. SE=#/7, where 1/7is the
escape rate.

| RS ARG i rdi

o e AT P S

S T TL WL E N5 1)1




ST

140

We obtain direct numerical estimates for R, by calculating the escape rates I'* and
I' after small positive and negative (respectively) currents have been applied, tilting the
potential. The numerical estimates for Ry are shown in Fig. 6.1, in comparison with the
WKB estimates and the experimental values. While the wavefunction expansion method
allows us to obtain reasonable estimates in the regime with x near I, where WKB methods
have broken down, its range of validity is also limited. As x becomes larger than one, the
range of bias current / giving a constant R, is very small, making estimates of R, very
inaccurate. For x distinctly larger than one, the calculated f{E) also no longer resembles a
Lorentzian bell shape, and P(t) can no longer be approximated by a decaying exponential.
At this point the quantum phase uncertainty approaches one well spacing, and our
assumption of a well defined exponential escape rate necessary for evaluating (6.3) breaks
down: other methods must be used to estimate R,. The numerical calculations are an
improvement over the WKB estimates, but a more refined model, perhaps taking into
account coherent reflections between subsequent wells is needed.

While our model is inaccurate for x > I, it provides a very good account of the
behavior of our sample with normal resistance /4.8 k€2, For this sample, x is only about
0.25, so that y(¢) should have relatively small width compared to the spacirig between
Josephson potential wells, and our model appears reasonable. As shown in Fig. 6.4, the
estimated value is in very good agreement with the low temperature value of R,.
Moreover, the crossover temperature at which the system apparently goes from this
quantum tunneling limit to thermally activated escape is in excellent agreement with the
Tiross ®hiap/2 mkp, as expected from (2.34). The predicted values of Ry(0) and of Teross
contain no adjustable parameters: R, is measured, and the capacitance is given by the
estimated intrinsic capacitance C;. This valuerf the capacitance is also in agreement with
that involving the charging effects described in Chapter 4 , and interpreted below in section
6.4.
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s Fig. 6.4: R, vs. T-! for the sample with Ry= 14.8 k2. The horizontal line is the zzro
: temperature estimate obtained by numerical methods. The dashed vertical line corresponds

: to T = #Aey/2 7k g, at which the crossover to the quantum limit should occur.
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This success in fitting the measurements performed on the sample with R, = 14.8
k£, is perhaps an indication that the simple underdamped arguments used above are indeed
appropriate. The effect of damping is, in general, to reduce the tunneling rate and the phase
fluctuations. In the semiclassical limit, we discussed in Chapter 2 that for damping to have
a significant effect, & must be of order of or greater than one, where o is given by

ae—L Do [E
a2 R4 E (6.6)

where Rg = h/4elis the quantum unit of resistance. Using (6.6) as a rough guide, the

underdamped results of this section should thus in fact be a good approximation as long as
Ry is used as the resistance R, as was appropriate in the classical treatment of Chapter 5
since E¢ ~ Ey, and Ry~ 10 - 500 M2>> R at low temperatures.

The success of this simple approach might be misleading. One of the critical steps
in our treatment was that even though the tunncling rates were calculated in the
underdamped limit, enough damping was assumed to be present to retrap the expectation
value of the phase in the next well, after the tunneling event had taken place. It is unlikely
that if the effect of the quasiparticles is completely described by the high resistance Ry,
enough damping would be present to retrap the phase. Quite possibly, the effective
damping resistance seen by the junction is frequency dependent, as was suggested by Ono
et al. [1986]. A more sophisticated treatrnent, perhaps involving a time-domain approach

to the tunneling process in the presence of damping, is needed to resolve these questions.

6.2. Interpretation of the Critical Current I,

Having developed a picture of the evolution of the system which gives rise to a

" linear resistive voltage at low current values, we now address the question of the critical
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current, i.c., up to what current level is this regime of slow phase slippage locally stable?
As we have seen in the semi-classical regime, two aspects must be considered. There is an
absolute limit (I, in the semi-classical case) set by the binding energy of the phase-locked
state, and there is a dynamic limit (/, in the semi-classical case) set by the dissipation which
prevents runaway and causes continual retrapping into the slow phase-slip (low voltage)

regime. In the quantum regime, we are only able to provide an estimate for the "binding

energy” of the phase locked state. Our estimate should thus serve as an approximate upper

bound for the actual critical current I, Quantitative estimates for a "dynamic" critical
current, which take into account of the device's relaxation by dissipation, are difficult in the
quantum regime, and will be left to future work.

Because the state of the system is time-dependent in the presence of a current,
which causes phase slippage, there is no simple way to find the analog of the classical
maximum supercurrent, /¢, even at T = 0. However it seems plausible to argue that, just
as I, = 2eE M in that case, where E; is the binding energy due to the cosine potential, in
this case we might expect I = (2e/#) x (B.E.) where B.E. is the binding energy estimated
in Chapter 2 by (2.16). The rationale is this: The work done by the current in an
incremental phase shift is (#/2e) ] d¢. For stability, this must be less than dE = [dE(¢)/d¢]
d¢. This leads to ] < (2e/) [dE($)/d$]max, Or 2eE j/K for the classical case E(¢) = -Ejcos §.
If we assume that the B.E. is lost for a phase shift A9 ~ I in the quantum case as well, it
follows that I~ (2e/fi) (B.E.). In particular, in the limit where E; << E;, we have B.E. =
Ej2/8E, [from (2.16)]), which leads to

Ic = (EJI8E;) I 6.7
Insofar as this formula is correct, the observed /, should scale with R,-2 rather than with

Ry! as does I,. In fact, just such a scaling with R,-2 of /. (extrapolated to T = 0) is found

for our highest resistance samples as shown in Fig. 6.5. Moreover, the absolute numerical
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magnitudes are also in reasonable agreement if E, is based on the same capacitance values
of 1 - 2 fF used earlier in interpreting Rq. Again, this must be considered quite satisfactory
in view of the approximate nature of the argument.

In a recent Comment on our 1988 Physical Review Letter article [lansiti et al.,
1988a) Mirhashem and Ferrell [1988] have suggested a similar estimate for the reduction in
I, due to quantum phase fluctuations. They estimate the linear response of a Josephson

junction by calculating the inverse inductance of the device, given by

L1 = (2e/%R Ej <cos ¢> (6.8)

where < > denotes the ground state expectation value.  As the ratio of E, to E; increases,
quantum fluctuations increase, and <cos ¢> decreases. Assuming that the crisical current
scales with the linear response (as it does in the absence of fluctuations) they obtain, at

large x=EJEj,

Io = (EJ/4EC) Io (6.9)

which is a factor of 2 larger than (6.7). Fig. 6.6 shows a comparison of these two I,
estimates calculated for 0 < x < 7, a range covering all our experimental data. While the
Mirashem-Ferrell estimate is closer to the experimental values for large x, both approaches
provide reasonably satisfactory agreement, given their approximate nature and the

experimental uncertainty in C.
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Insofar as this formula is correct, the observed I, should scale with R,-2 rather than with

Ry! as does I, In fact, just such a scaling with Ry-2 of I, (extrapolated to T = 0) is found
for our highest resistance samples as shown in Fig. 6.5. Moreover, the absolute numerical
magnitudes are also in reasonable agreement if E, is based on the same capacitance values
of 1 - 2 fF used earlier in interpreting R,. Again, this must be considered quite satisfactory
in view of the approximate nature of the argument.

In a recent Comment on our 1988 Physical Review Letter article [lansiti et al.,
1988a] Mirhashem and Ferrell [1988] have suggested a similar estimate for the reduction in
1, due to quantum phase fluctuations. They estimate the linear response of a Josephson

junction by calculating the inverse inductance of the device, given by

L = (2elh) Ej <cos ¢> (6.8)

where < > denotes the ground state expectation value. As the ratio of E, to Ey increases,
quantum fluctuations increase, and <cos ¢> decreases. Assuming that the critical current
scales with the line-- -esponse (as it does in the absence of fluctuations) they obtain, at

large x=E/E},

I =(Ej4E.) I, 6.9)

which is a factor of 2 larger than (6.7). Fig. 6.6 shows a comparison of these two /.
estimates calculated for 0 < x < 7, a range covering all our experimental data. While the
Mirashem-Ferrell estimate is closer to the experimental values for large x, both approaches
provide reasonably satisfactory agreement, given their approximate nature and the

experimental uncertainty in C.
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Fig. 6.5: Measured critical current /, (at H=0 and T=30mK) for six samples (black
squares). The A-B line is the Ambegaoi:ar—Bmtoff critical current prediction, The other
two lines are our estimate (6.10), plotted for two reasonable capacitance values.
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Fig. 6.6: Measured critical current I, (at H=0 and T=30m.K) for six samples (black
squares), plotted against the estimated ratio of charging to Josephson coupling energy.
Two of the estimates shown are obtained by our binding energy method (6.7), and by the
linear response method by Mirhashem and Ferrell (1988] given in (6.9). The third estimate
is our Zener tunneling estimate (only valid at large E¢/Ey), given by (6.10).
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6.3. Analysis in Q-space

The simple analysis we have provided in the previous sections is successful in

providing a semiquantitative account of our observations in the regime with Josephson

energy of order the charging energy (x~1). As we decrease the Josephson energy further,
quantumn phase fluctuations increase, and the behavior of the devices becomes increasingly
difficult to characterize by models based in ¢ space. It is useful to consider the opposite
viewpoint. Several authors? have investigated Josephson junction dynamics in charge
space, looking at the behavior of Q, the quantum mechanical conjugate of ¢. The energy
spectrum of the Josephson device assumes a band-like structure, reminiscent of that of a
one dimensional crystal. Such models appear particularly appropriate for the case E, >> Ej
(that is, x >> I), where the band structure approaches that of a free particle, with small
energy gaps caused by the periodic Josephson potential. The essence of these models was
described in Chapter 2. The dynamics in this limit, when a current is applied to the system,
; were described in Section 2.4.2, using the approach of Guinea and Schén [GS, 1986;
| 1987]. The energy spectrum GS derive, shown in Fig, 2.6, is shown again in Fig. 6.7.
The currrent I equals dQ,/dt. Whereas at low currents the system foilows the lowest
energy bands, at high currents the system begins to Zener tunnel into the higher bands.
The Zener tunneling probability, as discussed in Section 2.4.2, is given by Pz, ~ exp (-
lilz), where Iz is given by

§ 1 See, for example, Chakravarty, (1982, Schmid, [1985), Likharev and Zorin, [1985], Mullen, Ben-Jacob,
and Schuss, [1988], Ben-Jacob, Gefen, Mullen, and Schuss, [1988], Ben-Jacob, Gefen, Mullen, and Schuss,
[1985], Widom, Megaloudis, Clark, Prance, and Prance,[1984], and refer-. 1ces therein, Fisher and Zwerger,
{1985), Zwerger, [1987), Fisher, [1986), Guinea and Schon, [1986; 1987], Bittiker, [1987).
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Fig. 6.7: Sketch of the energy spectrum as a function of applied charge derived

foraJoseghson junction in the large charging energy limit, [After Guinea and
Schén, 1987.]
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Iz = neE2I8RE; = I = (REjII6E;) Ip (6.10)

We associate Iz with the observed critical current /. A comparison of this critical current
estimate with the experimental values is given in Fig. 6.5. The physical picture we have is
that for I < Iz, occasional Zener tunneling occurs, but the system quickly relaxes back
down to the lowest band. The associated dissipation contributes to the resistance R, but
this does not spell the end of the low voltage regime. Rather, we associate the end of this
regime with the complete breakdown of the band gap, allowing the system to run up onto
the upper, free-particle-like bands, where it acts "normal", i.e., as if Ey were zero. Because
of the exponential dependence, one might expect our criterion to be correct to within a
factor of 2; hence the three estimates (6.7), (6.9), and (6.10) are consistent within their
expected accuracy. In particular, all three results share the property that /. scales with Ej2
or Ry"2, rather than with the first powers of these quantities, as does /..

At T > 0, the probability of thermal excitation across the band gap E; would be
expected to be approximately given by e-E/AT on each cycle of the Bloch osciliation. If this
probability is added to that given by (6.10), and the sum set equal to /e in analogy to the
above argument, we obtain & siraple phenomenological estimate for the effect of
temperature in reducing /.. This argument gives the correct characteristic temperature for
substantial reduction in /;, namely Ej/k. This rough estimate was shown in Section 4.2.1
to be representative of our measurements. ‘

In this approach, as in the ¢-space one, damping during the MQT process is
expected to have a strong effect in reducing the tunnel probability, and hence increasing the
estimated critical current. The physical arguments of Bilttiker and Landauer [1986] suggest

that we can still use

dE A JZ(E+EJcos¢)
C

“do e

6.11)
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(which was dicussed in Chapter 2 in the classical regirie) at least approximately, in the
MQT case by taking the absolute value of the quantity under the radical. Thus in the present
case it has a similar value in the barrier and in the well. However, the question is what
value of R is physically correct to be inserted into this formula. We can say that R = R
would be consistent with our data, in that it would introduce rather modest corrections
which could be accomodated by choosing a different criterion for I, such as the criterion
that Pz be set equal to £-2 rather than e*/. On the other hand, R, is so large that its damping
effects would be negligible in this regime. Likewise, R, is sufficently below R, at low
temperatures that it would, if applicable, give such large comections as to be very difficult
to reconcile with the data. Even more inconsistent with the date. would be any damping
resistance comparable with the impedance of free space Z, = 377 Q, such as the

characteristic impedance of the leads attached to the junction.
6.4. Coexistence of Coulomb Blockade and Josephson Tunneling
We have provided a number of semiquantitative models accounting for the basic

features of our I-V curves observed at zero magnetic field. As described above, however,

we also performed a second set of experiments: By applying a magnetic field to the

junctions, we depressed the Josephson coupling even further. At low field values we

obtained measurements similar to the ones made at zero field, with R, increasing and /;
decreasing, as the field was increased. At higher fields, however, we discovered a new
regime, exemplified by the I-V curve shown in Fig. 1.4. As mentioned above, the new
striking feature is the coexistence of a sharp knee at a voltage corresponding to ¢/2C, with a
very sharp voltage jump at a "critical current” /..

We have proposed [Iansiti, et al., 1988a; 1988b] the following simplified

phenomenological picture: The difference in electrostatic energy due to the transfer of a
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single electron is ¢2/2C. In our samples this energy is large, typically of order 1 K. At low
voltages, below ¢/2C, the system does not acquire enough energy from the source in the
tunneling process to offset the increase in electrostatic energy involved. Tunneling is
therefore energetically. unfavourable and is inhibited, provided the temperature is low
enough for thermal activation processes to freeze out. This yields a static situation;
electrons are "trapped"” on the junction electrodes and the dynamic resistance is extremely
high. As V becomes greater than e/2C, on the other hand, a single electron transfer
becomes energetically favorable, and the differential resistance decreases, giving rise to a
knze in the [-V curve at that voltage. In this dynamic regime, if the instantaneous voltage
increases beyond e/C, it becomes energetically favorable also for Cooper pairs to tunnel,
and the voltage is driven back down. The observed average voltage is thus restricted to a
value below e/C, until the system's ability to transfer Cooper pairs is exceeded at I=/;. It
thus appears that Josephson tunneling plays an important role in the explanation of the
observed plateau in the I-V curve and the subsequent critical current.
This explanation can be restated in terms of the band model described in Section
4.3. The highly resistive part of the I-V curve may then be due to the system being trapped
at a fixed charge on the lowest band. This configuration is, however, only stable for
V<e/2C. At higher (average) voltages, the system must spend time in higher bands and
tends to relax to lower bands by electron tunneling, conducting charge and reducing the
differential resistance of the device. This happens until the current is large enough for
Zener processes to become so likely that the Josephson band gaps are ineffective at keeping
the system in low bands. At this point (/=/;) the voltage rises sharply to the energy gap.
This interpretation raises questions about the most reulistic way to model the source
of current in the experimental setup. If an ideal source were feeding current to the system,
charge could not be trapped on the electrodes, and @, could not remain fixed on one of the
branches of the energy spectrum, at low currents. Our actual current source was described
in Chapter 3. Naturally, if the leads are included in the treatment, the source acquires a
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frequency-dependent impedance. The applied current is then constant only if we average

over timescales longer than those characteristic of the leads. At the fast timescales relevant
to the dynamics of the device, the characteristic impedance of the source is likely to be
much lower than the nominal 500 MQ of the distaat roon: cemperature dc biasing circuit.
More appropriate characteristic values might depend on the transmission line properties of

the leads, and could hardly be expected to be larger than a few k's. On the other hand,

our apparently successful interpretation of the zero-magnetic-field results successfully

relied on the assumption that the junctions are in the underdamped limit, which would
imply that the characteristic impedance seen by the devices was at least larger than Rg ~ 6
kQ.

While these considerations are by no means resolved, it is not inconceivable that,
depending on the intrinsic impedance of the junction, charge could either become trapped
on the electrodes or flow through the junction at a steady rate. The RCSJ model describes
the impedance of the Josephson junction as the parallel combination of three channels. The
Josephson channel is inductive, aqd shorts out the junction at reasonably low frequency.
However, in the quantum regime, the Joscphson inductance is given by (6.8), which
diverges as <cos ¢> — 0, i.e. as quantum phase fluctuations increase. Therefore, as the
ratio of charging to Josephson energy increases, the intrinsic impedance of a Josephson
device also increases; the room temperature current source might become ineffective, at
timescales short compared to the time constant of the experimental set-upt. Charge might
thus temporarily become trapped on the junction electrodes, giving rise to the very high

resistance branch observed on the I-V characteristics at low currents.

t Which is quite long, of order one msec.
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CHAPTER 7
CONCLUSIONS

This report describes the first study of submicron thin film devices lithographically
patterned in this laboratory. To carry it out, we fabricated high quality high resistance Sn-
SnOx-Sn tunnel junctions using an electron-beam patterning facility, which in part was
developed and built specifically for this experiment. Samples in single, double, and
eleven-junction-array configurations were succesfully fabricated. The measurements were
performed in a dilution refrigerator, at temperatures between 20 mK and 4.2 KX, and at
magnetic fields between 0 and 3 T. These experiments yielded some striking results which
probe the crossover region between the conventional Jesephson regime, in which the
Josephson energy E;is much larger than the charging energy E., and the opposite regime,
in which charging effects are dominant. These results are outlined below:

When the charging and Josephson energy are of comparable magnitude, the
measured I-V characteristic is always resistive, even at low currents / < /; (whereR =R, <
Ry); apparently the very low Josephson barrier height, comparable to £gT or to the energy-
level width, causes very frequent phase slips, due to thermal activation and/or quantum
tunneling. The critical current itself, now defined as the current at which the average phase
slip rate sharply increases to the energy gap frequency, is greatly reduced below the
unfluctuated Ambegaokar-Baratoff critical current I, even at the lowest temperatures, and
apparently scales with the binding energy of the ground state, i.e. with R,2 for E. > E.

If the Josephson energy is reduced to a value much smaller than the charging
energy, by applying a magnetic field, we discover a new regime. The I-V characteristic
becomes very resistive (R ~ R >> R,,) at low currents, with a sharp knee at a voltage
apparently corresponding to e/2C. The average phase slip rate increases very quickly at
low currents, as the Josephson potential seems too weak to localize . While quantum

fluctuations in ¢ are presumably large, the charge now seems classically well defined. This
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is perhaps demonstrated by the knee at e/2C, the voltage difference required before the

- tunneling of a single electron becomes favored despite the capacitive energy 02/2C.

Since we have attempted to explore a relatively new regime in the behavior of

Josephson devices, we have raised a number of puzzling and as yet unresolved questions.

. Among these, perhaps the most striking one relates to the apparent isolation of the devices

we studied from the outside environment: why are the contributions of parasitic
capacitance, and the impedance of the leads, apparently not overwhelming the dynamics of
our small junctions? Our findings appear to be in agreement with measurements made on
scanning tunneling microscopes [see Van Bentum et al., 1987; Hartmann, et al., 1988).
However, little consensus has been reached on the reason for this puzzling observation.
To what extent can the dynamics of a mesoscopic device be accurately modeled using
standard circuit techniques? More work, both on the experimental and theoretical side,
seems warranted before this controversy is resolved.

A more specific question can be asked about the nature of the damping that is
affecting the behavior of our devices. What is the damping mechanism that leads to the
observation of the low current resistance R,, while the junction I-V curve is still hysteretic?
We have provided a few simple phenomenological models which are consistent with our
observations, but much additional work is required before comprehensive understanding
and a truly quantitative agreement is reached. ‘

At Jeast three broad and separate areas come to mind in which further experimental
work could be performed both to attempt to answer some of these questions, and to extend
our findings to other areas of current interest, First of all, challenging experimental goals
can be set regarding the measurement of the actual high frequency response of our small
junctions, and the observation of Bloch oscillations, by synchronizing the passage of

electrons through. the barrier with external microwave radiation. Such measurements might
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provide further confirmation of some of the models presented in this report, and give very

useful information on the damping mechanism which governs the behavior of our devices.

A second possible area of extension is the measurement of two dimensional arrays
of small Josephson junctions. A number of groupst have reported siriking observations
on in situ quench-condensed granular films of Sn and other superconducting materials.
Apparently, if the film normal resistance is larger than the quantum resistance (Rg = hide?
~ 6 k$2), the film is resistive at all temperatures, independent of the material and grain size
(and thus geometrical capacitance). Several theoretical modelst have been presented to
account for these observations, many of which model the films as an array of Josephson
devices. These results are reminiscent of ours, since the junctions we measured were
found to be resistive at all currents and temperatures, as long as their normal resistance was
larger than a few kQ's (see Fig. 4.5). Of course, the models developed in this work relate
the behavior of our junctions to the value of their charging energy €2/2C, and are thus
strongly dependent on the capacitance. Still, our findings might well be related to the
granular film measurements, perhaps by interchanging the effect of geometrical capacitance
with the effect of ideal low temperature frequency-dependent quasiparticle damping [which
contributes an effective capacitance given by (2.38)]. The measurement of 2-d arrays of
patterned superconducting junctions might be an effective way to test and extend these
ideas and provide information on pt se transitions in a two dimensional system in the
presence of quantum fluctuations. The fabrication scheme developed in this work would
probably lend itself very well to the fabrication of relatively large (50 x 50) arrays of high
quality small tunnel junctions which would be well suited for such experiments.

1 Sce, for example, Orr et al., [1986], Dynes, et al., [1978), Hebard and Paalanen, [1984],
§ See, for example, Chakravarty et al., [1986], Fisher [1986], Zwerger [1987], Ferrell [1988].
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Fig. 7.1: The three terminal configuration of Fulton and Dolan. [After Fulton
and Dolan, 1987.] The capacitive electrode was implanted on the back of the

substrate.

gate

Fig. 7.2: A novel three terminal conﬁgtu'aﬁon: The capacitive electrode should

be placed as close as possible to the rest of device. The gate voltage, in this
case, would have to be provided by an ac source, such as a pulse generator.
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The third area of extension regards the possible use of small wnnel junctions in a

three-terminal device. Fulton and Dolan [1987] have awakened considerable interest in a
clever sample configuration (shown schematically in Fig. 7.1) in which a very small
metallic strip is isolated from the environment by two small tunnel junctions. In their case,
the junctions are so small that the charging energy overwhelms the Josephson energy of the
device. The charge trapped on the strip is modulated by means of a capacitively coupled
electrode, the gate. The response of the device, measured across the two junctions, is
naturally very nonlinear, by virtue of the sharpness of the superconducting energy gap
structure. The dynamic resistance of the device can then be varied over a considerable
range by varying the voltage applied to the cap :itively coupled electrode. We believe that
it would be interesting to study this type of dev . : in the regime where the Josephson and
charging encrgy are comparable. Could one induce a switch between the low voltage
branch to the high voltage branch of the I-V curve by applying a voltage to the capacitively
coupled electrode? It might also be interesting to consider the simple configuration shown
in Fig. 7.2. Only one junction is required in the configuration. Naturally, on long time
scales, the capacitance between the gate and the device is very large, since the second
junction is not present to isolate the device from the leads. However, on very short time
scales, enough charge might build up on the gate side of the junction to affect the dynamics

of the device, perhaps inducing a switch between branches of the I-V curve.

In conclusion, we have experimentally investigated the competition between
charging, Josephson, and thermal energies in mesoscopic tunnel junctions. Furthermore,
we have presented a series of simple phenomenological models which provide satisfactory
semiquantitative explanations of some of the remarkable phenomena observed
experimentally, and may be a useful starting point for more ngorous theoretical treatments.
Our observations also raise a number of interesting unresolved questions which provide the

incentive for new experimental and theoretical work.
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APPENDIX ONE
THE ELECTRON-BEAM LITHOGRAPHY SYSTEM

The electron-beam system used in the exposure process described in Chapter 3,
consists of three compnnents: an old JEOL 31 U scanning electron microscope, an IBM
Instruments system 9000 microcomputer, and a box of interface electronics. The pattern to
be exposed is loaded into the memory of the microcomputer, and a set of machine language
routines? sends out two digital sixteen bit signals, representing the X and Y channels, to
the interfacing electronics. The interface box consists essentially of a power supply and
two separate sets of Analogic digital/analog converters. The computer enables the D/A
converters which interpret the two sixrteen bit signals, convert them to voltages and send
them to the X-Y driver of the electron microscope. A sketch of the interfacing electronics is

given in Figs. Al.1 and Al1.2.

# Written by Dr. Horst Rogalla.
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APPENDIX TWO
A SCHEMATIC OF THE COMPUTER CONTROLLED
DATA ACQUISITION SYSTEM

A simple sketch of the acquisition system is shown in Fig. A2.1. The system is
designed to measure the current at which a junction switches between the low and high
voltage branches of the I-V curve, which we define as the critical current I, of the device.
As we explain in Chapter 2, in the presence of thermal activation or quantumn tunnelirg, /,
acquires a stochastic character. By repeating the measurement of I, many times, data can
be accumulated on the switching distribution of the device, which can than e used to
obtain information on the dynamics of the junction. :

While a computer controlled acquisition system is converient for the analysis of the
data, digital computers tend to be quite noisy, and should be as far removed from the
experiment as possible. By using opto-isolators and PAR 113 diffecential preampilifiers as
buffers, as shown in Fig. A2.1, the computer is isolated from the experiment, which is
also enclosed in a separate screened room.

To obtain a measurement of the critical current of the device, the computzr first
sends a low (0 V) trigger signal to the current source, which begins its swesp. the voltage
across the Josephson junction will be at first low, for I < I, and switch to a value larger
than I mV (for a Sn - Sn junction) at I =/,. At tl.is point the Schmitt trigger, which is
simply a level crossing detector with hysytemsis, sends a low signal (0 V) 1o the current
source, which holds its current at a constant value. The Schmitt rigger low signal aisc
enables the computer to perform the measurement of the critical current, The cyclé is then
be repeated, to obtain an accurate distribution of I, values. The maximum /, sampling rate
is about 1 kHz. A plot of the voltages vs. time in key parts of the system is snown in Fig.
A2.2. Fig. A2.3 and A2.4 are schematics of the current source and of one of the opto-

isolators.
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